Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(37): 13258-13268, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37667915

ABSTRACT

The reaction between CpRu(PPh3)2NCS (1a) and PMePh2 yields CpRu(PPh3)(PMePh2)NCS (2a) while CpRu(PPh3)(PMePh2)Cl reacts with SCN- to form the S-bonded isomer, CpRu(PPh3)(PMePh2)SCN (2b). Compound 1a and the linkage isomers of 2 were characterized by X-ray crystallography. The kinetics of the reaction between 1a and PMePh2 under pseudo-first order conditions in THF and in fluorobenzene to form 2a are consistent with a dissociative interchange mechanism. Activation parameters for the reaction are: ΔH† = 15.7 ± 0.6 kcal mol-1 and ΔS† = -35 ± 2 cal mol-1 K-1 in THF vs. ΔH† = 24.8 ± 1.2 kcal mol-1 and ΔS† = -6 ± 4 cal mol-1 K-1 in C6H5F. In the presence of added SCN-, the rate of phosphine substitution is unchanged but a mixture of 2a and 2b is observed. The selenocyanate derivative, CpRu(PPh3)2SeCN (3b), crystallizes as the Se-bonded linkage isomer. Compound 3b reacts with PMePh2 under pseudo-first order conditions in fluorobenzene to form CpRu(PPh3)(PMePh2)SeCN (4b) at a much faster rate than 1a with activation parameters: ΔH† = 30.9 ± 4.8 kcal mol-1 and ΔS† = 22.4 ± 15.9 cal mol-1 K-1 with no evidence for linkage isomerization to the N-bonded products.

2.
Dalton Trans ; 43(40): 15221-7, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25185443

ABSTRACT

The kinetics of phosphine substitution in CpRu(PAr3)2Cl by PMePh2 under pseudo-first order conditions in CDCl3 have been measured for PAr3 = PPh3, 1a, PPh2(p-tol), 1b, P(p-tol)3, 1c, P(p-CH3OC6H4)3, 1d, and P(p-FC6H4)3), 1e. Activation parameters characteristic of a dissociative pathway (ΔH(†) = 110-124 ± 2 kJ mol(-1), ΔS(†) = 16-44 ± 5-12 J mol(-1) K(-1)) are observed for all five compounds. The rate of substitution in CpRu(PAr3)2Cl (1a) and CpRu[P(p-FC6H4)3]2Cl (1e) is independent of added chloride ion and decreases in the presence of excess PAr3, however, the rate of substitution in CpRu[P(p-CH3OC6H4)3]2Cl (1d) is first order in added chloride ion and is less dependent on added PAr3. A mechanism involving [CpRu(PAr3)2(PMePh2)](+)[Cl](-) intermediates contributes to the substitution in 1b-d.

3.
Biochem J ; 357(Pt 2): 581-6, 2001 Jul 15.
Article in English | MEDLINE | ID: mdl-11439112

ABSTRACT

The strictly anaerobic bacterium Desulfonispora thiosulfatigenes ferments taurine via sulphoacetaldehyde, which is hydrolysed to acetate and sulphite by sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12). The lyase was expressed at high levels and a two-step, 4.5-fold purification yielded an apparently homogeneous soluble protein, which was presumably a homodimer in its native form; the molecular mass of the subunit was about 61 kDa (by SDS/PAGE). The mass was determined to be 63.8 kDa by matrix-assisted laser-desorption ionization-time-of-flight (MALDI-TOF) MS. The purified enzyme converted 1 mol of sulphoacetaldehyde to 1 mol each of sulphite and acetate, but no requirement for thiamine pyrophosphate (TPP) was detected. The N-terminal and two internal amino acid sequences were determined, which allowed us to generate PCR primers. The gene was amplified and sequenced. The DNA sequence had no significant homologue in the databases searched, whereas the derived amino acid sequence indicated an oxo-acid lyase, revealed a TPP-binding site and gave a derived molecular mass of 63.8 kDa.


Subject(s)
Bacteria, Anaerobic/enzymology , Gram-Positive Bacteria/enzymology , Lyases/chemistry , Lyases/metabolism , Amino Acid Sequence , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/growth & development , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/growth & development , Kinetics , Lyases/genetics , Molecular Sequence Data , Molecular Weight
4.
Appl Microbiol Biotechnol ; 52(3): 446-50, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10531657

ABSTRACT

Highly substituted arenesulfonates are chemically stable compounds with a range of industrial applications, and they are widely regarded as being poorly degradable. We did enrichment cultures for bacteria able to utilise the sulfonate moiety of 14 compounds, and we obtained mixed cultures that were able to desulfonate each compound. The products formed were usually identified as the corresponding phenol, but because we could not obtain pure cultures, we followed up these findings with quantitative work in pure cultures of, e.g., Pseudomonas putida S-313, which generated the same phenols from the compounds studied. Many of these phenols are known to be biodegradable, or to be subject to binding to soil components. We thus presume that the capacity to degrade aromatic sulfonates extensively is widespread in the environment, even though the degradative capacity is spread over several organisms and conditions.


Subject(s)
Arylsulfonates/metabolism , Pseudomonas putida/metabolism , Water Pollutants, Chemical/metabolism , Benzenesulfonates/metabolism , Biodegradation, Environmental , Biological Availability , Industrial Waste , Naphthalenesulfonates/metabolism , Stilbenes/metabolism , Sulfonic Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...