Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mov Disord ; 38(10): 1871-1880, 2023 10.
Article in English | MEDLINE | ID: mdl-37492892

ABSTRACT

BACKGROUND: Degeneration of the cortically-projecting cholinergic basal forebrain (cBF) is a well-established pathologic correlate of cognitive decline in Parkinson's disease (PD). In Alzheimer's disease (AD) the effect of cBF degeneration on cognitive decline was found to be mediated by parallel atrophy of denervated cortical areas. OBJECTIVES: To examine whether the association between cBF degeneration and cognitive decline in PD is mediated by parallel atrophy of cortical areas and whether these associations depend on the presence of comorbid AD pathology. METHODS: We studied 162 de novo PD patients who underwent serial 3 T magnetic resonance imaging scanning (follow-up: 2.33 ± 1.46 years) within the Parkinson's Progression Markers Initiative. cBF volume and regional cortical thickness were automatically calculated using established procedures. Individual slopes of structural brain changes and cognitive decline were estimated using linear-mixed models. Associations between longitudinal cBF degeneration, regional cortical thinning, and cognitive decline were assessed using regression analyses and mediation effects were assessed using nonparametric bootstrap. Complementary analyses assessed the effect of amyloid-ß biomarker positivity on these associations. RESULTS: After controlling for global brain atrophy, longitudinal cBF degeneration was highly correlated with faster cortical thinning (PFDR < 0.05), and thinning in cBF-associated cortical areas mediated the association between cBF degeneration and cognitive decline (rcBF-MoCA = 0.30, P < 0.001). Interestingly, both longitudinal cBF degeneration and its association with cortical thinning were largely independent of amyloid-ß status. CONCLUSIONS: cBF degeneration in PD is linked to parallel thinning of cortical target areas, which mediate the effect on cognitive decline. These associations are independent of amyloid-ß status, indicating that they reflect proper features of PD pathophysiology. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Alzheimer Disease , Basal Forebrain , Cognitive Dysfunction , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Basal Forebrain/diagnostic imaging , Cerebral Cortical Thinning/pathology , Neuropsychological Tests , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Amyloid beta-Peptides , Alzheimer Disease/pathology , Atrophy/pathology , Magnetic Resonance Imaging/methods
2.
Mov Disord ; 38(5): 755-763, 2023 05.
Article in English | MEDLINE | ID: mdl-36912400

ABSTRACT

BACKGROUND: Peripheral inflammatory immune responses are suggested to play a major role in dopaminergic degeneration in Parkinson's disease (PD). The neutrophil-to-lymphocyte ratio (NLR) is a well-established biomarker of systemic inflammation in PD. Degeneration of the nigrostriatal dopaminergic system can be assessed in vivo using [123 I]FP-CIT single photon emission computed tomography imaging of striatal dopamine transporter (DAT) density. OBJECTIVES: To assess the relationship between the peripheral immune profile (NLR, lymphocytes, and neutrophils) and striatal DAT density in patients with PD. METHODS: We assessed clinical features, the peripheral immune profile, and striatal [123 I]FP-CIT DAT binding levels of 211 patients with PD (primary-cohort). Covariate-controlled associations between the immune response and striatal DAT levels were assessed using linear regression analyses. For replication purposes, we also studied a separate cohort of 344 de novo patients with PD enrolled in the Parkinson's Progression Markers Initiative (PPMI-cohort). RESULTS: A higher NLR was significantly associated with lower DAT levels in the caudate (primary-cohort: ß = -0.01, p < 0.001; PPMI-cohort: ß = -0.05, p = 0.05) and the putamen (primary-cohort: ß = -0.05, p = 0.02; PPMI-cohort: ß = -0.06, p = 0.02). Intriguingly, a lower lymphocyte count was significantly associated with lower DAT levels in both the caudate (primary-cohort: ß = +0.09, p < 0.05; PPMI-cohort: ß = +0.11, p = 0.02) and the putamen (primary-cohort: ß = +0.09, p < 0.05, PPMI-cohort: ß = +0.14, p = 0.01), but an association with the neutrophil count was not consistently observed (caudate; primary-cohort: ß = -0.05, p = 0.02; PPMI-cohort: ß = 0, p = 0.94; putamen; primary-cohort: ß = -0.04, p = 0.08; PPMI-cohort: ß = -0.01, p = 0.73). CONCLUSIONS: Our findings across two independent cohorts suggest a relationship between systemic inflammation and dopaminergic degeneration in patients with PD. This relationship was mainly driven by the lymphocyte count. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Tropanes , Dopamine Plasma Membrane Transport Proteins/metabolism , Corpus Striatum/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Inflammation/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...