Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38352321

ABSTRACT

Transcript buffering entails the reciprocal modulation of mRNA synthesis and degradation rates to maintain stable RNA levels under varying cellular conditions. Current research supports a global, non-sequence-specific connection between mRNA synthesis and degradation, but the underlying mechanisms are still unclear. In this study, we investigated changes in RNA metabolism following acute depletion of TIP60/KAT5, the acetyltransferase subunit of the NuA4 transcriptional coactivator complex, in mouse embryonic stem cells. By combining RNA sequencing of nuclear, cytoplasmic, and newly synthesised transcript fractions with biophysical modelling, we demonstrate that TIP60 predominantly enhances transcription of numerous genes, while a smaller set of genes undergoes TIP60-dependent transcriptional repression. Surprisingly, transcription changes caused by TIP60 depletion were offset by corresponding changes in RNA nuclear export and cytoplasmic stability, indicating gene-specific buffering mechanisms. Similarly, disruption of the unrelated ATAC coactivator complex also resulted in gene-specific transcript buffering. These findings reveal that transcript buffering functions at a gene-specific level and suggest that cells dynamically adjust RNA splicing, export, and degradation in response to individual RNA synthesis alterations, thereby sustaining cellular homeostasis.

2.
Eur J Immunol ; 53(7): e2350373, 2023 07.
Article in English | MEDLINE | ID: mdl-37143384

ABSTRACT

During immune responses, B cells engaging a cognate antigen are recruited to GCs in secondary lymphoid organs where they will diversify their BCR to generate highly specific and adapted humoral responses. They do so, by inducing the expression of activation-induced cytidine deaminase (AID), which initiates somatic hypermutation (SHM) and class switch recombination (CSR). AID deaminates cytosines in ss DNA, generating U:G mismatches that are processed to induce ds DNA break intermediates during CSR that result in the expression of a different antibody isotype. Interestingly, hypoxia regions have been reported in GCs and suggesting that hypoxia could modulate the humoral response. Furthermore, hypoxia inducible transcription factor (HIF) can bind to the AID promoter and induce AID expression in a non-B-cell setting, suggesting that it might be involved in the transcriptional induction of AID in B cells, hence, regulating SHM and CSR. We, thus, hypothesized that HIF could regulate the efficiency of CSR. Here, we show that the inactivation of both the HIF-1α and HIF-1ß subunits of the HIF transcription factor in murine CH12 B cells results in defective CSR and that this is due to the suboptimal induction of AID expression.


Subject(s)
Cytidine Deaminase , Gene Expression Regulation , Animals , Mice , B-Lymphocytes , Cytidine Deaminase/metabolism , Immunoglobulin Class Switching , Immunoglobulin Isotypes/metabolism , Somatic Hypermutation, Immunoglobulin , Transcription Factors/genetics
3.
Mol Cell ; 82(11): 2132-2147.e6, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35447083

ABSTRACT

Mouse pericentromeric DNA is composed of tandem major satellite repeats, which are heterochromatinized and cluster together to form chromocenters. These clusters are refractory to DNA repair through homologous recombination (HR). The mechanisms by which pericentromeric heterochromatin imposes a barrier on HR and the implications of repeat clustering are unknown. Here, we compare the spatial recruitment of HR factors upon double-stranded DNA breaks (DSBs) induced in human and mouse pericentromeric heterochromatin, which differ in their capacity to form clusters. We show that while DSBs increase the accessibility of human pericentromeric heterochromatin by disrupting HP1α dimerization, mouse pericentromeric heterochromatin repeat clustering imposes a physical barrier that requires many layers of de-compaction to be accessed. Our results support a model in which the 3D organization of heterochromatin dictates the spatial activation of DNA repair pathways and is key to preventing the activation of HR within clustered repeats and the onset of chromosomal translocations.


Subject(s)
Heterochromatin , Translocation, Genetic , Animals , Cluster Analysis , DNA Breaks, Double-Stranded , Heterochromatin/genetics , Homologous Recombination/genetics , Mice
4.
J Cell Biol ; 221(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35389430

ABSTRACT

Membrane contact sites between organelles are organized by protein bridges. Among the components of these contacts, the VAP family comprises ER-anchored proteins, such as MOSPD2, that function as major ER-organelle tethers. MOSPD2 distinguishes itself from the other members of the VAP family by the presence of a CRAL-TRIO domain. In this study, we show that MOSPD2 forms ER-lipid droplet (LD) contacts, thanks to its CRAL-TRIO domain. MOSPD2 ensures the attachment of the ER to LDs through a direct protein-membrane interaction. The attachment mechanism involves an amphipathic helix that has an affinity for lipid packing defects present at the surface of LDs. Remarkably, the absence of MOSPD2 markedly disturbs the assembly of lipid droplets. These data show that MOSPD2, in addition to being a general ER receptor for inter-organelle contacts, possesses an additional tethering activity and is specifically implicated in the biology of LDs via its CRAL-TRIO domain.


Subject(s)
Endoplasmic Reticulum , Lipid Droplets , Membrane Proteins , Receptors, Chemokine , Endoplasmic Reticulum/metabolism , Homeostasis , Lipid Droplets/metabolism , Membrane Proteins/metabolism , Mitochondrial Membranes , Receptors, Chemokine/metabolism
5.
Elife ; 112022 03 23.
Article in English | MEDLINE | ID: mdl-35319462

ABSTRACT

Centrioles are formed by microtubule triplets in a ninefold symmetric arrangement. In flagellated protists and animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the 'acorn.' Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly, and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.


Subject(s)
Cell Cycle Proteins , Centrioles , Ciliopathies , Microtubule-Associated Proteins , Animals , Cell Cycle Proteins/genetics , Centrioles/metabolism , Centrosome/metabolism , Cilia/metabolism , Humans , Microtubule-Associated Proteins/genetics , Microtubules/metabolism
6.
Nature ; 600(7890): 748-753, 2021 12.
Article in English | MEDLINE | ID: mdl-34853474

ABSTRACT

Centromeric integrity is key for proper chromosome segregation during cell division1. Centromeres have unique chromatin features that are essential for centromere maintenance2. Although they are intrinsically fragile and represent hotspots for chromosomal rearrangements3, little is known about how centromere integrity in response to DNA damage is preserved. DNA repair by homologous recombination requires the presence of the sister chromatid and is suppressed in the G1 phase of the cell cycle4. Here we demonstrate that DNA breaks that occur at centromeres in G1 recruit the homologous recombination machinery, despite the absence of a sister chromatid. Mechanistically, we show that the centromere-specific histone H3 variant CENP-A and its chaperone HJURP, together with dimethylation of lysine 4 in histone 3 (H3K4me2), enable a succession of events leading to the licensing of homologous recombination in G1. H3K4me2 promotes DNA-end resection by allowing DNA damage-induced centromeric transcription and increased formation of DNA-RNA hybrids. CENP-A and HJURP interact with the deubiquitinase USP11, enabling formation of the RAD51-BRCA1-BRCA2 complex5 and rendering the centromeres accessible to RAD51 recruitment and homologous recombination in G1. Finally, we show that inhibition of homologous recombination in G1 leads to centromeric instability and chromosomal translocations. Our results support a model in which licensing of homologous recombination at centromeric breaks occurs throughout the cell cycle to prevent the activation of mutagenic DNA repair pathways and preserve centromeric integrity.


Subject(s)
Chromosomal Proteins, Non-Histone , DNA Repair , DNA-Binding Proteins , Centromere/genetics , Centromere/metabolism , Centromere Protein A , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , DNA , DNA-Binding Proteins/metabolism , Histones/metabolism , Homologous Recombination
7.
Nature ; 600(7888): 329-333, 2021 12.
Article in English | MEDLINE | ID: mdl-34819671

ABSTRACT

Efficient humoral responses rely on DNA damage, mutagenesis and error-prone DNA repair. Diversification of B cell receptors through somatic hypermutation and class-switch recombination are initiated by cytidine deamination in DNA mediated by activation-induced cytidine deaminase (AID)1 and by the subsequent excision of the resulting uracils by uracil DNA glycosylase (UNG) and by mismatch repair proteins1-3. Although uracils arising in DNA are accurately repaired1-4, how these pathways are co-opted to generate mutations and double-strand DNA breaks in the context of somatic hypermutation and class-switch recombination is unknown1-3. Here we performed a genome-wide CRISPR-Cas9 knockout screen for genes involved in class-switch recombination and identified FAM72A, a protein that interacts with the nuclear isoform of UNG (UNG2)5 and is overexpressed in several cancers5. We show that the FAM72A-UNG2 interaction controls the levels of UNG2 and that class-switch recombination is defective in Fam72a-/- B cells due to the upregulation of UNG2. Moreover, we show that somatic hypermutation is reduced in Fam72a-/- B cells and that its pattern is skewed upon upregulation of UNG2. Our results are consistent with a model in which FAM72A interacts with UNG2 to control its physiological level by triggering its degradation, regulating the level of uracil excision and thus the balance between error-prone and error-free DNA repair. Our findings have potential implications for tumorigenesis, as reduced levels of UNG2 mediated by overexpression of Fam72a would shift the balance towards mutagenic DNA repair, rendering cells more prone to acquire mutations.


Subject(s)
B-Lymphocytes , DNA Mismatch Repair , Immunoglobulin Class Switching , Immunoglobulin Switch Region , Mutation , Somatic Hypermutation, Immunoglobulin , Animals , Female , Male , Mice , B-Lymphocytes/metabolism , CRISPR-Cas Systems/genetics , Genome/genetics , Immunoglobulin Class Switching/genetics , Immunoglobulin Switch Region/genetics , Somatic Hypermutation, Immunoglobulin/genetics , Up-Regulation , Uracil/metabolism
8.
Cell Rep ; 36(8): 109598, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433046

ABSTRACT

SAGA (Spt-Ada-Gcn5 acetyltransferase) and ATAC (Ada-two-A-containing) are two related coactivator complexes, sharing the same histone acetyltransferase (HAT) subunit. The HAT activities of SAGA and ATAC are required for metazoan development, but the role of these complexes in RNA polymerase II transcription is less understood. To determine whether SAGA and ATAC have redundant or specific functions, we compare the effects of HAT inactivation in each complex with that of inactivation of either SAGA or ATAC core subunits in mouse embryonic stem cells (ESCs). We show that core subunits of SAGA or ATAC are required for complex assembly and mouse ESC growth and self-renewal. Surprisingly, depletion of HAT module subunits causes a global decrease in histone H3K9 acetylation, but does not result in significant phenotypic or transcriptional defects. Thus, our results indicate that SAGA and ATAC are differentially required for self-renewal of mouse ESCs by regulating transcription through different pathways in a HAT-independent manner.


Subject(s)
Cell Self Renewal/physiology , Embryonic Stem Cells/metabolism , Histone Acetyltransferases/metabolism , Trans-Activators/metabolism , Animals , Histones/metabolism , Mice , Protein Processing, Post-Translational/physiology , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
9.
J Cell Sci ; 134(10)2021 05 15.
Article in English | MEDLINE | ID: mdl-34037234

ABSTRACT

Many cellular processes, ranging from cell division to differentiation, are controlled by nuclear pore complexes (NPCs). However, studying the contributions of individual NPC subunits to these processes in vertebrates has long been impeded by their complexity and the lack of efficient genetic tools. Here, we use genome editing in mouse embryonic stem cells (mESCs) to characterize the role of NPC structural components, focusing on the short arm of the Y-complex that comprises Nup85, Seh1 and Nup43. We show that Seh1 and Nup43, although dispensable in pluripotent mESCs, are required for their normal cell growth rates, their viability upon differentiation and for the maintenance of proper NPC density. mESCs with an N-terminally truncated Nup85 mutation (in which interaction with Seh1 is greatly impaired) feature a similar reduction of NPC density. However, their proliferation and differentiation are unaltered, indicating that it is the integrity of the Y-complex, rather than the number of NPCs, that is critical to ensure these processes.


Subject(s)
Mouse Embryonic Stem Cells , Nuclear Pore , Animals , Cell Differentiation/genetics , Gene Editing , Mice , Nuclear Pore/genetics , Nuclear Pore Complex Proteins/genetics
10.
Mol Cell ; 81(12): 2596-2610.e7, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33961796

ABSTRACT

p53-binding protein 1 (53BP1) regulates both the DNA damage response and p53 signaling. Although 53BP1's function is well established in DNA double-strand break repair, how its role in p53 signaling is modulated remains poorly understood. Here, we identify the scaffolding protein AHNAK as a G1 phase-enriched interactor of 53BP1. We demonstrate that AHNAK binds to the 53BP1 oligomerization domain and controls its multimerization potential. Loss of AHNAK results in hyper-accumulation of 53BP1 on chromatin and enhanced phase separation, culminating in an elevated p53 response, compromising cell survival in cancer cells but leading to senescence in non-transformed cells. Cancer transcriptome analyses indicate that AHNAK-53BP1 cooperation contributes to the suppression of p53 target gene networks in tumors and that loss of AHNAK sensitizes cells to combinatorial cancer treatments. These findings highlight AHNAK as a rheostat of 53BP1 function, which surveys cell proliferation by preventing an excessive p53 response.


Subject(s)
Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Line, Tumor , Chromatin/metabolism , DNA/genetics , DNA Breaks, Double-Stranded , DNA Repair , G1 Phase/physiology , Histones/metabolism , Humans , MCF-7 Cells , Membrane Proteins/genetics , Membrane Proteins/physiology , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Signal Transduction/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/physiology
11.
J Exp Med ; 217(11)2020 11 02.
Article in English | MEDLINE | ID: mdl-32865561

ABSTRACT

The autosomal recessive immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a genetically heterogeneous disorder. Despite the identification of the underlying gene defects, it is unclear how mutations in any of the four known ICF genes cause a primary immunodeficiency. Here we demonstrate that loss of ZBTB24 in B cells from mice and ICF2 patients affects nonhomologous end-joining (NHEJ) during immunoglobulin class-switch recombination and consequently impairs immunoglobulin production and isotype balance. Mechanistically, we found that ZBTB24 associates with poly(ADP-ribose) polymerase 1 (PARP1) and stimulates its auto-poly(ADP-ribosyl)ation. The zinc-finger in ZBTB24 binds PARP1-associated poly(ADP-ribose) chains and mediates the PARP1-dependent recruitment of ZBTB24 to DNA breaks. Moreover, through its association with poly(ADP-ribose) chains, ZBTB24 protects them from degradation by poly(ADP-ribose) glycohydrolase (PARG). This facilitates the poly(ADP-ribose)-dependent assembly of the LIG4/XRCC4 complex at DNA breaks, thereby promoting error-free NHEJ. Thus, we uncover ZBTB24 as a regulator of PARP1-dependent NHEJ and class-switch recombination, providing a molecular basis for the immunodeficiency in ICF2 syndrome.


Subject(s)
DNA End-Joining Repair/genetics , Face/abnormalities , Immunoglobulin Class Switching/genetics , Mutation , Primary Immunodeficiency Diseases/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , B-Lymphocytes/immunology , DNA Breaks , Face/pathology , HEK293 Cells , Humans , Immunoglobulin Switch Region , Mice , Poly (ADP-Ribose) Polymerase-1/metabolism , Primary Immunodeficiency Diseases/blood , Primary Immunodeficiency Diseases/pathology , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transfection
13.
Biol Cell ; 112(1): 22-37, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31789463

ABSTRACT

BACKGROUND: The centrosome regulates cell spatial organisation by controlling the architecture of the microtubule (MT) cytoskeleton. Conversely, the position of the centrosome within the cell depends on cytoskeletal networks it helps organizing. In mammalian cells, centrosome positioning involves a population of MT stably anchored at centrioles, the core components of the centrosome. An MT-anchoring complex containing the proteins ninein and Cep170 is enriched at subdistal appendages (SAP) that decorate the older centriole (called mother centriole) and at centriole proximal ends. Here, we studied the role played at the centrosome by hVFL3/CCDC61, the human ortholog of proteins required for anchoring distinct sets of cytoskeletal fibres to centrioles in unicellular eukaryotes. RESULTS: We show that hVFL3 co-localises at SAP and at centriole proximal ends with components of the MT-anchoring complex, and physically interacts with Cep170. Depletion of hVFL3 increased the distance between mother and daughter centrioles without affecting the assembly of a filamentous linker that tethers the centrioles and contains the proteins rootletin and C-Nap1. When the linker was disrupted by inactivating C-Nap1, hVFL3-depletion exacerbated centriole splitting, a phenotype also observed following depletion of other SAP components. This supported that hVFL3 is required for SAP function, which we further established by showing that centrosome positioning is perturbed in hVFL3-depleted interphase cells. Finally, we found that hVFL3 is an MT-binding protein. CONCLUSIONS AND SIGNIFICANCE: Together, our results support that hVFL3 is required for anchoring MT at SAP during interphase and ensuring proper centrosome cohesion and positioning. The role of the VFL3 family of proteins thus appears to have been conserved in evolution despite the great variation in the shape of centriole appendages in different eukaryotic species.


Subject(s)
Carrier Proteins/metabolism , Centrioles , Centrosome , Tubulin/metabolism , Animals , CRISPR-Cas Systems , Carrier Proteins/genetics , Cell Line , Centrioles/metabolism , Centrioles/ultrastructure , Centrosome/metabolism , Centrosome/ultrastructure , Cilia/ultrastructure , Cytoskeletal Proteins/metabolism , Cytoskeleton/ultrastructure , Humans , Microscopy, Electron , Microtubules/metabolism , Microtubules/ultrastructure , RNA, Small Interfering
14.
PLoS One ; 14(8): e0220694, 2019.
Article in English | MEDLINE | ID: mdl-31461461

ABSTRACT

A large number of genetic studies in yeast rely on the use of expression vectors. To facilitate the experimental approach of these studies, several collections of expression vectors have been generated (YXplac, pRS series, etc.). Subsequently, these collections have been expanded by adding more diversity to many of the plasmid features, including new selection markers and new promoter sequences. However, the ever growing number of plasmid features makes it unrealistic for research labs to maintain an up-to-date collection of plasmids. Here, we developed the COSPLAY toolbox: a Golden Gate approach based on the scheme of a simple modular plasmid that recapitulates and completes all the properties of the pRS plasmids. The COSPLAY toolbox contains a basal collection of individual functional modules. Moreover, we standardized a simple and rapid, software-assisted protocol which facilitates the addition of new personalized modules. Finally, our toolbox includes the possibility to select a genomic target location and to perform a single copy integration of the expression vector.


Subject(s)
Cloning, Molecular/methods , Genetic Vectors/genetics , Plasmids/genetics , Saccharomyces cerevisiae/genetics , Gene Library , Genes, Reporter , Genetic Engineering/methods , Software , Transformation, Genetic
16.
Mol Ther Nucleic Acids ; 16: 246-256, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30925452

ABSTRACT

Genome editing with the CRISPR/Cas9 technology has emerged recently as a potential strategy for therapy in genetic diseases. For dominant mutations linked to gain-of-function effects, allele-specific correction may be the most suitable approach. In this study, we tested allele-specific inactivation or correction of a heterozygous mutation in the Dynamin 2 (DNM2) gene that causes the autosomal dominant form of centronuclear myopathies (CNMs), a rare muscle disorder belonging to the large group of congenital myopathies. Truncated single-guide RNAs targeting specifically the mutated allele were tested on cells derived from a mouse model and patients. The mutated allele was successfully targeted in patient fibroblasts and Dnm2R465W/+ mouse myoblasts, and clones were obtained with precise genome correction or inactivation. Dnm2R465W/+ myoblasts showed an alteration in transferrin uptake and autophagy. Specific inactivation or correction of the mutated allele rescued these phenotypes. These findings illustrate the potential of CRISPR/Cas9 to target and correct in an allele-specific manner heterozygous point mutations leading to a gain-of-function effect, and to rescue autosomal dominant CNM-related phenotypes. This strategy may be suitable for a large number of diseases caused by germline or somatic mutations resulting in a gain-of-function mechanism.

17.
Cell Death Differ ; 26(9): 1615-1630, 2019 09.
Article in English | MEDLINE | ID: mdl-30442946

ABSTRACT

PARP3 has been shown to be a key driver of TGFß-induced epithelial-to-mesenchymal transition (EMT) and stemness in breast cancer cells, emerging as an attractive therapeutic target. Nevertheless, the therapeutic value of PARP3 inhibition has not yet been assessed. Here we investigated the impact of the absence of PARP3 or its inhibition on the tumorigenicity of BRCA1-proficient versus BRCA1-deficient breast cancer cell lines, focusing on the triple-negative breast cancer subtype (TNBC). We show that PARP3 knockdown exacerbates centrosome amplification and genome instability and reduces survival of BRCA1-deficient TNBC cells. Furthermore, we engineered PARP3-/- BRCA1-deficient or BRCA1-proficient TNBC cell lines using the CRISPR/nCas9D10A gene editing technology and demonstrate that the absence of PARP3 selectively suppresses the growth, survival and in vivo tumorigenicity of BRCA1-deficient TNBC cells, mechanistically via effects associated with an altered Rictor/mTORC2 signaling complex resulting from enhanced ubiquitination of Rictor. Accordingly, PARP3 interacts with and ADP-ribosylates GSK3ß, a positive regulator of Rictor ubiquitination and degradation. Importantly, these phenotypes were rescued by re-expression of a wild-type PARP3 but not by a catalytic mutant, demonstrating the importance of PARP3's catalytic activity. Accordingly, reduced survival and compromised Rictor/mTORC2 signaling were also observed using a cell-permeable PARP3-specific inhibitor. We conclude that PARP3 and BRCA1 are synthetic lethal and that targeting PARP3's catalytic activity is a promising therapeutic strategy for BRCA1-associated cancers via the Rictor/mTORC2 signaling pathway.


Subject(s)
BRCA1 Protein/genetics , Cell Cycle Proteins/genetics , Poly(ADP-ribose) Polymerases/genetics , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Triple Negative Breast Neoplasms/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Heterografts , Humans , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Signal Transduction , Transforming Growth Factor beta/genetics , Triple Negative Breast Neoplasms/pathology
19.
Cell Rep ; 23(8): 2443-2454, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29791854

ABSTRACT

Nup133 belongs to the Y-complex, a key component of the nuclear pore complex (NPC) scaffold. Studies on a null mutation in mice previously revealed that Nup133 is essential for embryonic development but not for mouse embryonic stem cell (mESC) proliferation. Using single-pore detection and average NE-fluorescence intensity, we find that Nup133 is dispensable for interphase and postmitotic NPC scaffold assembly in pluripotent mESCs. However, loss of Nup133 specifically perturbs the formation of the nuclear basket as manifested by the absence of Tpr in about half of the NPCs combined with altered dynamics of Nup153. We further demonstrate that its central domain mediates Nup133's role in assembling Tpr and Nup153 into a properly configured nuclear basket. Our findings thus revisit the role of the Y-complex in pore biogenesis and provide insights into the interplay between NPC scaffold architecture, nuclear basket assembly, and the generation of heterogeneity among NPCs.


Subject(s)
Minor Histocompatibility Antigens/metabolism , Mouse Embryonic Stem Cells/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Animals , Female , Imaging, Three-Dimensional , Interphase , Male , Mice , Minor Histocompatibility Antigens/chemistry , Nuclear Pore Complex Proteins/chemistry , Protein Domains , Proto-Oncogene Proteins/metabolism
20.
Front Immunol ; 9: 373, 2018.
Article in English | MEDLINE | ID: mdl-29599769

ABSTRACT

Systemic lupus erythematosus (SLE) is a severe and heterogeneous autoimmune disease with a complex genetic etiology, characterized by the production of various pathogenic autoantibodies, which participate in end-organ damages. The majority of human SLE occurs in adults as a polygenic disease, and clinical flares interspersed with silent phases of various lengths characterize the usual evolution of the disease in time. Trying to understand the mechanism of the different phenotypic traits of the disease, and considering the central role of B cells in SLE, we previously performed a detailed wide analysis of gene expression variation in B cells from quiescent SLE patients. This analysis pointed out an overexpression of TRIB1. TRIB1 is a pseudokinase that has been implicated in the development of leukemia and also metabolic disorders. It is hypothesized that Trib1 plays an adapter or scaffold function in signaling pathways, notably in MAPK pathways. Therefore, we planned to understand the functional significance of TRIB1 overexpression in B cells in SLE. We produced a new knock-in model with B-cell-specific overexpression of Trib1. We showed that overexpression of Trib1 specifically in B cells does not impact B cell development nor induce any development of SLE symptoms in the mice. By contrast, Trib1 has a negative regulatory function on the production of immunoglobulins, notably IgG1, but also on the production of autoantibodies in an induced model. We observed a decrease of Erk activation in BCR-stimulated Trib1 overexpressing B cells. Finally, we searched for Trib1 partners in B cells by proteomic analysis in order to explore the regulatory function of Trib1 in B cells. Interestingly, we find an interaction between Trib1 and CD72, a negative regulator of B cells whose deficiency in mice leads to the development of autoimmunity. In conclusion, the overexpression of Trib1 could be one of the molecular pathways implicated in the negative regulation of B cells during SLE.


Subject(s)
B-Lymphocytes/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Lupus Erythematosus, Systemic/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adult , Animals , Antibody Formation/genetics , Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Autoantibodies/metabolism , Autoimmunity/genetics , Cells, Cultured , Female , Humans , Immunoglobulin G/biosynthesis , Immunomodulation , Intracellular Signaling Peptides and Proteins/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...