Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics ; 90(5): 636-45, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17888623

ABSTRACT

Cross-species hybridization (CSH), i.e., the hybridization of a (target) species RNA to a DNA microarray that represents another (reference) species, is often used to study species diversity. However, filtration of CSH data has to be applied to extract valid information. We present a novel approach to filtering the CSH data, which utilizes spot characteristics (SCs) of image-quantification data from scanned spotted cDNA microarrays. Five SCs that were affected by sequence similarity between probe and target sequences were identified (designated as BS-SCs). Filtration by all five BS-SC thresholds demonstrated improved clustering for two of the three examined experiments, suggesting that BS-SCs may serve for filtration of data obtained by CSH, to improve the validity of the results. This CSH data-filtration approach could become a promising tool for studying a variety of species, especially when no genomic information is available for the target species.


Subject(s)
Gene Expression Profiling , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Plant Proteins/genetics , Solanum lycopersicum/genetics , Solanum tuberosum/genetics , Species Specificity
2.
PLoS One ; 2(8): e807, 2007 Aug 29.
Article in English | MEDLINE | ID: mdl-17726537

ABSTRACT

BACKGROUND: Transcription factors (TF) regulate expression by binding to specific DNA sequences. A binding event is functional when it affects gene expression. Functionality of a binding site is reflected in conservation of the binding sequence during evolution and in over represented binding in gene groups with coherent biological functions. Functionality is governed by several parameters such as the TF-DNA binding strength, distance of the binding site from the transcription start site (TSS), DNA packing, and more. Understanding how these parameters control functionality of different TFs in different biological contexts is a must for identifying functional TF binding sites and for understanding regulation of transcription. METHODOLOGY/PRINCIPAL FINDINGS: We introduce a novel method to screen the promoters of a set of genes with shared biological function (obtained from the functional Gene Ontology (GO) classification) against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. More than 8,000 human (and 23,000 mouse) genes, were assigned to one of 134 GO sets. Their promoters were searched (from 200 bp downstream to 1,000 bp upstream the TSS) for 414 known DNA motifs. We optimized the sequence similarity score threshold, independently for every location window, taking into account nucleotide heterogeneity along the promoters of the target genes. The method, combined with binding sequence and location conservation between human and mouse, identifies with high probability functional binding sites for groups of functionally-related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were tested experimentally. CONCLUSIONS/SIGNIFICANCE: We identified reliably functional TF binding sites. This is an essential step towards constructing regulatory networks. The promoter region proximal to the TSS is of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.


Subject(s)
Promoter Regions, Genetic , Transcription Factors/metabolism , Transcription Initiation Site , Animals , Binding Sites , Cell Cycle , Humans , Mice , TATA Box , Transcription Factors/chemistry
3.
Bioinformatics ; 19(3): 368-75, 2003 Feb 12.
Article in English | MEDLINE | ID: mdl-12584122

ABSTRACT

MOTIVATION: DNA microarrays have recently been used for the purpose of monitoring expression levels of thousands of genes simultaneously and identifying those genes that are differentially expressed. The probability that a false identification (type I error) is committed can increase sharply when the number of tested genes gets large. Correlation between the test statistics attributed to gene co-regulation and dependency in the measurement errors of the gene expression levels further complicates the problem. In this paper we address this very large multiplicity problem by adopting the false discovery rate (FDR) controlling approach. In order to address the dependency problem, we present three resampling-based FDR controlling procedures, that account for the test statistics distribution, and compare their performance to that of the naïve application of the linear step-up procedure in Benjamini and Hochberg (1995). The procedures are studied using simulated microarray data, and their performance is examined relative to their ease of implementation. RESULTS: Comparative simulation analysis shows that all four FDR controlling procedures control the FDR at the desired level, and retain substantially more power then the family-wise error rate controlling procedures. In terms of power, using resampling of the marginal distribution of each test statistics substantially improves the performance over the naïve one. The highest power is achieved, at the expense of a more sophisticated algorithm, by the resampling-based procedures that resample the joint distribution of the test statistics and estimate the level of FDR control. AVAILABILITY: An R program that adjusts p-values using FDR controlling procedures is freely available over the Internet at www.math.tau.ac.il/~ybenja.


Subject(s)
Algorithms , Gene Expression Profiling/methods , Gene Expression Regulation , Models, Genetic , Oligonucleotide Array Sequence Analysis/methods , Animals , Cholesterol, HDL/genetics , Cholesterol, HDL/metabolism , Computer Simulation , DNA, Complementary/genetics , Liver/metabolism , Mice , Mice, Inbred C57BL , Models, Statistical , Reproducibility of Results , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...