Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 May 03.
Article in English | MEDLINE | ID: mdl-36993540

ABSTRACT

Objectives: Brain segmentation of infant magnetic resonance (MR) images is vitally important in studying developmental mental health and disease. The infant brain undergoes many changes throughout the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. Here, we introduce a deep neural network BIBSNet (Baby and Infant Brain Segmentation Neural Network), an open-source, community-driven model that relies on data augmentation and a large sample size of manually annotated images to facilitate the production of robust and generalizable brain segmentations. Experimental Design: Included in model training and testing were MR brain images on 84 participants with an age range of 0-8 months (median postmenstrual ages of 13.57 months). Using manually annotated real and synthetic segmentation images, the model was trained using a 10-fold cross-validation procedure. Testing occurred on MRI data processed with the DCAN labs infant-ABCD-BIDS processing pipeline using segmentations produced from gold standard manual annotation, joint-label fusion (JLF), and BIBSNet to assess model performance. Principal Observations: Using group analyses, results suggest that cortical metrics produced using BIBSNet segmentations outperforms JLF segmentations. Additionally, when analyzing individual differences, BIBSNet segmentations perform even better. Conclusions: BIBSNet segmentation shows marked improvement over JLF segmentations across all age groups analyzed. The BIBSNet model is 600x faster compared to JLF and can be easily included in other processing pipelines.

2.
Proc Mach Learn Res ; 172: 1075-1084, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36968615

ABSTRACT

Longitudinal studies of infants' brains are essential for research and clinical detection of neurodevelopmental disorders. However, for infant brain MRI scans, effective deep learning-based segmentation frameworks exist only within small age intervals due to the large image intensity and contrast changes that take place in the early postnatal stages of development. However, using different segmentation frameworks or models at different age intervals within the same longitudinal data set would cause segmentation inconsistencies and age-specific biases. Thus, an age-agnostic segmentation model for infants' brains is needed. In this paper, we present "Infant-SynthSeg", an extension of the contrast-agnostic SynthSeg segmentation framework applicable to MRI data of infants at ages within the first year of life. Our work mainly focuses on extending learning strategies related to synthetic data generation and augmentation, with the aim of creating a method that employs training data capturing features unique to infants' brains during this early-stage development. Comparison across different learning strategy settings, as well as a more-traditional contrast-aware deep learning model (nnU-net) are presented. Our experiments show that our trained Infant-SynthSeg models show consistently high segmentation performance on MRI scans of infant brains throughout the first year of life. Furthermore, as the model is trained on ground truth labels at different ages, even labels that are not present at certain ages (such as cerebellar white matter at 1 month) can be appropriately segmented via Infant-SynthSeg across the whole age range. Finally, while Infant-SynthSeg shows consistent segmentation performance across the first year of life, it is outperformed by age-specific deep learning models trained for a specific narrow age range.

SELECTION OF CITATIONS
SEARCH DETAIL
...