Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365283

ABSTRACT

Six Conyza bonariensis (L.) Cronquist populations were screened in a pot experiment at the University of Pretoria's Hatfield experimental farm to evaluate and confirm the degree of glyphosate response. Resistance factors ranged from 2.7- to 24.8-fold compared to the most susceptible biotype. Partial sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene found no mutation at the Thr102, Ala103 or Pro106 positions. EPSPS mRNA expression levels in glyphosate-resistant biotypes (Swellendam and Piketberg seed sampling sites) were comparable or lower than those in susceptible biotypes (George and Fauresmith sites). Additionally, the highest expression level was reported in the susceptible Fauresmith biotype. These results indicate that glyphosate resistance in the tested resistant biotypes is not caused by target-site mutations and EPSPS gene amplification. Leaf surface characteristics can influence the spread and subsequent absorption of glyphosate. The study established non-significant results in the amount of leaf wax and insufficient mean separations in cuticle thickness and trichome density data. Therefore, the observed differences in response of biotypes to glyphosate treatment could not be attributed conclusively to differences in the leaf morphological characteristics investigated. Results from the inheritance study were consistent with glyphosate resistance being inherited in an incompletely dominant manner when plants were treated with glyphosate herbicide at 900 g ae ha-1.

2.
J Am Chem Soc ; 144(18): 8084-8095, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35471843

ABSTRACT

Polyvinyl polymers bearing pendant hole transport functionalities have been extensively explored for solution-processed hole transport layer (HTL) technologies, yet there are only rare examples of high anisotropic packing of the HT moieties of these polymers into substrate-parallel orientations within HTL films. For small molecules, substrate-parallel alignment of HT moieties is a well-established approach to improve overall device performance. To address the longstanding challenge of extension from vapor-deposited small molecules to solution-processable polymer systems, a fundamental chemistry tactic is reported here, involving the positioning of HT side chains within macromolecular frameworks by the construction of HT polymers having bottlebrush topologies. Applying state-of-the-art polymer synthetic techniques, various functional subunits, including triphenylamine (TPA) for hole transport and adhesion to the substrate, and perfluoro alkyl-substituted benzyloxy styrene for migration to the air interface, were organized with exquisite control over the composition and placement throughout the bottlebrush topology. Upon assembling the HT bottlebrush (HTB) polymers into monolayered HTL films on various substrates through spin-casting and thermal annealing, the backbones of HTBs were vertically aligned while the grafts with pendant TPAs were extended parallel to the substrate. The overall design realized high TPA π-stacking along the out-of-plane direction of the substrate in the HTLs, which doubled the efficiency of organic light-emitting diodes compared with linear poly(vinyl triphenylamine)s.

3.
ACS Appl Mater Interfaces ; 12(9): 11287-11295, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32049488

ABSTRACT

Crossing losses in silicone optical waveguides are related to the magnitude and spatial extent of the waveguide refractive index gradient. When processing conditions are altered, the refractive index gradient can vary substantially, even when the formulation remains constant. Controlling the refractive index gradient requires control of the concentration of small molecules present within the core and clad layers. Developing a fundamental understanding of how small molecule migration drives changes in crossing loss requires the ability to examine chemical functionality over small length scales, which is a natural fit for atomic force microscopy-infrared spectroscopy (AFM-IR). In this work, AFM-IR spectra from model bilayer stacks are initially examined to understand molecular migration that occurs from heating the core and clad layers. The results of these model studies are then applied to photopatterned waveguide builds, where structure-function relationships are constructed between values of crossing loss and the concentration of C-H and O-H functionalities present in the core and clad layers. Results show that small molecule evaporation and migration are competing processes that need to be controlled to minimize crossing loss.

4.
Pest Manag Sci ; 74(10): 2216-2225, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29687580

ABSTRACT

There have been previous calls for, and efforts focused on, realizing the power and potential of weed genomics for better understanding of weeds. Sustained advances in genome sequencing and assembly technologies now make it possible for individual research groups to generate reference genomes for multiple weed species at reasonable costs. Here, we present the outcomes from several meetings, discussions, and workshops focused on establishing an International Weed Genomics Consortium (IWGC) for a coordinated international effort in weed genomics. We review the 'state of the art' in genomics and weed genomics, including technologies, applications, and on-going weed genome projects. We also report the outcomes from a workshop and a global survey of the weed science community to identify priority species, key biological questions, and weed management applications that can be addressed through greater availability of, and access to, genomic resources. Major focus areas include the evolution of herbicide resistance and weedy traits, the development of molecular diagnostics, and the identification of novel targets and approaches for weed management. There is increasing interest in, and need for, weed genomics, and the establishment of the IWGC will provide the necessary global platform for communication and coordination of weed genomics research. © 2018 Society of Chemical Industry.


Subject(s)
Genomics/methods , Herbicide Resistance/genetics , Plant Weeds/drug effects , Weed Control/methods
5.
Environ Entomol ; 43(5): 1286-94, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25259692

ABSTRACT

Plant morphological changes mediated by growth conditions are linked to changes in host preference of herbivores. Understanding how these morphological changes influence herbivore feeding is critical in the interpretation of results of host evaluation of candidate weed biocontrol agents in quarantine and improvement of the evaluation system. We determined the effect of plant growth conditions on leaf trichomes and host choice of Conchyloctenia hybrida Boheman, an insect adapted to the removal of trichomes before feeding. The study included four Solanum species: Solanum lichtensteinii Willdenow (natural host of C. hybrida), Solanum mauritianum Scopoli, Solanum melongena L., and Solanum tuberosum L.. Plants were grown in either full sun, shade, a glasshouse, or in a growth-chamber. Plants grown in full sun had a higher leaf trichome density than those in shade or controlled environments. S. mauritianum had the highest trichome density and thickness of trichome layer. In a multiple-choice test using excised leaves, feeding by C. hybrida was higher on Solanum plants grown in the controlled environment as compared with full sun. Trichome removal from leaf surfaces of plants grown in full sun, using adhesive tape, was effective for S. lichtensteinii, S. mauritianum, and S. melongena, but not S. tuberosum. Leaf consumption by C. hybrida increased significantly where manual trichome removal using adhesive tape was effective. Structurally, leaves of S. tuberosum have simple trichomes with basal cells sunken into the mesophyll tissue. When using forceps to remove trichomes of S. tuberosum, mesophyll and vascular tissue remained attached to the trichomes. Generally, the type, density, and mat-thickness of leaf trichomes determined feeding by C. hybrida, but varied with plant species and growth conditions.


Subject(s)
Coleoptera/physiology , Herbivory , Pest Control, Biological , Solanum/anatomy & histology , Weed Control , Animals , Feeding Behavior , Female , Solanum/growth & development , Species Specificity
6.
J Chem Ecol ; 35(9): 1137-50, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19795173

ABSTRACT

The invasive success of Parthenium hysterophorus L. is thought to be partially attributable to allelopathy mediated by the plant metabolite parthenin. To assess the ecological significance of parthenin release from plant material, its persistence and phytotoxicity in soil was studied. Results show parthenin is rapidly degraded with an average DT (50) of 59 h under standard experimental conditions. Degradation was delayed in sterilized soils, at lower soil moisture, and higher parthenin concentrations. Higher temperatures, higher CEC(pot)/clay content of soils, soil preconditioning with parthenin, and P. hysterophorus infestation accelerated degradation. Physico-chemical and biological processes are, therefore, expected to govern the fate of parthenin in soil. Parthenin exhibited low soil phytotoxicity and did not accumulate over time. Along with the indicated reduction in bioavailability and development of hormetic effects, results suggest that for parthenin to have detrimental allelopathic effects, it requires high P. hysterophorus densities that result in high soil levels of parthenin and soil conditions that favor the persistence of parthenin. In light of this, the ecological significance of parthenin is discussed.


Subject(s)
Asteraceae/chemistry , Sesquiterpenes/metabolism , Soil , Biodegradation, Environmental , Biological Phenomena , Sesquiterpenes/chemistry , Sesquiterpenes/toxicity , Soil Microbiology , Temperature , Time Factors
7.
Chemosphere ; 55(2): 157-66, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14761688

ABSTRACT

Pesticide soil/solution distribution coefficients ( Kd values), commonly referred to as pesticide soil sorption values, are utilized in computer and decision aid models to predict soil mobility of the compounds. The values are specific for a given chemical in a given soil sample, normally taken from surface soil, a selected soil horizon, or at a specific soil depth, and are normally related to selected soil properties. Pesticide databases provide Kd values for each chemical, but the values vary widely depending on the soil sample on which the chemicals were tested. We have correlated Kd values reported in the literature with the reported soil properties for an assortment of pesticides in an attempt to improve the accuracy of a Kd value for a specific chemical in a soil with known soil properties. Mathematical equations were developed from regression equations for the related properties. Soil properties that were correlated included organic matter content, clay mineral content, and/or soil pH, depending on the chemical properties of the pesticide. Pesticide families for which Kd equations were developed for 57 pesticides include the following: Carboxy acid, amino sulfonyl acid, hydroxy acid, weakly basic compounds and nonionizable amide/anilide, carbamate, dinitroaniline, organochlorine, organophosphate, and phenylurea compounds. Mean Kd values for 32 additional pesticides, many of which had Kd values that were correlated with specific soil properties but for which no significant Kd equations could be developed are also included.


Subject(s)
Models, Chemical , Pesticides/chemistry , Soil/analysis , Adsorption , Aluminum Silicates , Clay , Hydrogen-Ion Concentration , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...