Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(47): 32688-32698, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38013479

ABSTRACT

Barium phosphate glasses were prepared with 0.5 mol% Tb4O7 added alongside SnO up to 5 mol% with the purpose of evaluating the resulting terbium and tin oxidation states and their impact on glass structural, thermal, and luminescent properties. Following material synthesis by melt-quenching, the composition-structure-property investigation was pursued encompassing measurements by X-ray diffraction (XRD), X-ray absorption near-edge spectroscopy (XANES), Raman spectroscopy, differential scanning calorimetry (DSC), dilatometry, and photoluminescence (PL) spectroscopy. While XRD confirmed the amorphous nature of the glasses, results from XANES indicated that terbium occurs as terbium(III) with a predisposition for tin to exist as tin(IV) which decreased at high SnO content. The structural as well as the thermal properties appeared to be mostly impacted by the presence of tin(IV). Specifically, glass depolymerization was indicated to be induced by Sn4+ ions, and their concentration was observed to correlate with glass transition and softening temperatures. On the other hand, the tin(II) remnants were observed to exert an impact on the luminescent properties shifting light emission from the green towards the blue-green (cyan). It is indicated that Tb4O7 reacting to produce Tb2O3 supports the oxidation of tin(II) to tin(IV) which in turn dominates the physical properties. However, this was somewhat circumvented at the highest SnO content wherein tin(IV) appeared to be lower.

2.
Environ Sci Technol ; 57(1): 730-740, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36538415

ABSTRACT

Manganese (Mn) exists as Mn(II), Mn(III), or Mn(IV) in soils, and the Mn oxidation state controls the roles of Mn in numerous environmental processes. However, the variations of Mn oxidation states with climate remain unknown. We determined the Mn oxidation states in highly weathered bulk volcanic soils (primary minerals free) across two rainfall gradients covering mean annual precipitation (MAP) of 0.25-5 m in the Hawaiian Islands. With increasing MAP, the soil redox conditions generally shifted from oxic to suboxic and to anoxic despite fluctuating at each site; concurrently, the proportions of Mn(IV) and Mn(II) decreased and increased, respectively. Mn(III) was low at both low and high MAP, but accumulated substantially, up to 80% of total Mn, in soils with prevalent suboxic conditions at intermediate MAP. Mn(III) was likely hosted in Mn(III,IV) and iron(III) oxides or complexed with organic matter, and its distribution among these hosts varied with soil redox potentials and soil pH. Soil redox conditions and rainfall-driven leaching jointly controlled exchangeable Mn(II) in soils, with its concentration peaking at intermediate MAP. The Mn redox chemistry was at disequilibrium, with the oxidation states correlating with long-term average soil redox potentials better than with soil pH. The soil redox conditions likely fluctuated between oxic and anoxic conditions more frequently at intermediate than at low and high MAP, creating biogeochemical hot spots where Mn, Fe, and other redox-sensitive elements may be actively cycled.


Subject(s)
Ferric Compounds , Manganese , Manganese/analysis , Soil , Iron , Oxidation-Reduction
3.
ACS Appl Mater Interfaces ; 14(50): 55636-55643, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36508584

ABSTRACT

Tin-based electrocatalysts exhibit a remarkable ability to catalyze CO2 to formate selectively. Understanding the size-property relationships and exploring the evolution of the active size still lack complete understanding. Herein, we prepared SnO2 nanoparticles (NPs) with a controllable size supported on commercial carbon spheres (SnO2/C-n, n = 1, 2, and 3) by a simple low-temperature annealing method. The transmission electron microscopy/scanning transmission electron microscopy images and fitting results of the small-angle X-ray scattering profile confirm the increased size of SnO2 NPs due to the increase of SnO2 loading. The catalytic performance of SnO2 has proved the size-dependent effect during the CO2 reduction reaction process. The as-prepared SnO2/C-1 displayed the maximum Faradic efficiency of formate (FEHCOO-) of 82.7% at -1.0 V versus reversible hydrogen electrode (RHE). In contrast, SnO2/C-2 and SnO2/C-3 with larger particle sizes achieved lower maximum FEHCOO- and larger overpotential. Moreover, we employed operando X-ray absorption spectroscopy to study the evolution of the oxidation state and local coordination environment of SnO2 under working conditions. In addition to the observed shifts of the rising edge of Sn K-edge X-ray absorption near-edge structure spectra to a lower energy side as the applied voltage decreases, the decreased coordination number of Sn in the Sn-O scattering path and the presence of Sn metal contribution in the extended X-ray absorption fine structure spectra verify the reduction of SnO2 to SnOx and metallic Sn.

4.
ACS Appl Mater Interfaces ; 14(37): 42171-42177, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36095162

ABSTRACT

One-dimensional (1D) π-d-conjugated coordination polymers (CCPs) with charge delocalization have attracted significant attention due to their potential application in energy conversion and storage. However, the fundamental understanding of the correlation of their structural parameters with photophysical and photocatalytic properties remains underexplored. Herein, we report three novel Cu-node anthracene-based 1D π-d CCPs with systematic variation of steric groups (Ph > Me > H) at the 9 and 10 position of anthracene (denoted as AnPh, AnMe, and AnH), which is aimed at altering the stacking of the polymer chains and its impact on the inter-chain charge transport property. Using the combination of steady-state X-ray absorption spectroscopy, optical transient absorption spectroscopy, X-ray transient absorption spectroscopy, and electrochemical impedance spectroscopy, we show that the linear ligands (AnPh, AnMe, and AnH) with different degrees of steric groups (Ph > Me > H) introduced at the 9 and 10 position of anthracene can alter the stacking of the polymer chains and thus impact their crystallinity, charge separation, and charge transport property, which in turn impacts their photocatalytic performance for hydrogen evolution reaction.

5.
Phys Chem Chem Phys ; 23(23): 13228-13241, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34086024

ABSTRACT

The coordination of crystalline products resulting from the co-crystallization of Np(vi), Pu(vi), Am(vi), and Np(v) with uranyl nitrate hexahydrate (UNH) has been revealed through solid-state spectroscopic characterization via diffuse reflectance UV-Vis-NIR spectroscopy, SEM-EDS, and extended X-ray absorption fine structure (EXAFS) spectroscopy. Density functional and multireference wavefunction calculations were performed to analyze the An(vi/v)O2(NO3)2·2H2O electronic structures and to help assign the observed transitions in the absorption spectra. EXAFS show a similar coordination between the U(VI) in UNH and Np(vi) and Pu(vi); while Am resulted in a similar coordination to Am(iii), as reduction of Am(vi) occurred prior to EXAFS data being obtained. The co-crystallization of the oxidized transuranic species-penta- and hexavalent-with UNH, represents a significant advance from not only a practical standpoint in providing an elegant solution for used nuclear fuel recycle, but also as an avenue to expand the fundamental understanding of the 5f electronic behavior in the solid-state.

6.
Proc Natl Acad Sci U S A ; 114(15): 3855-3860, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28348217

ABSTRACT

The Co4O4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV)2 state may be captured in a Co(III)2(IV)2 cubane. We demonstrate that the Co(III)2(IV)2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III)2(IV)2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV)2 dimer. The exchange coupling in the cofacial Co(IV)2 site allows for parallels to be drawn between the electronic structure of the Co4O4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV)2 center on O-O bond formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...