Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Cell Chem Biol ; 25(11): 1389-1402.e9, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30197194

ABSTRACT

α-Synuclein (αSN) aggregation is central to the etiology of Parkinson's disease (PD). Large-scale screening of compounds to identify aggregation inhibitors is challenged by stochastic αSN aggregation and difficulties in detecting early-stage oligomers (αSOs). We developed a high-throughput screening assay combining SDS-stimulated αSN aggregation with FRET to reproducibly detect initial stages in αSN aggregation. We screened 746,000 compounds, leading to 58 hits that markedly inhibit αSN aggregation and reduce αSOs' membrane permeabilization activity. The most effective aggregation inhibitors were derivatives of (4-hydroxynaphthalen-1-yl)sulfonamide. They interacted strongly with the N-terminal part of monomeric αSN and reduced αSO-membrane interactions, possibly by affecting electrostatic interactions. Several compounds reduced αSO toxicity toward neuronal cell lines. The inhibitors introduced chemical modifications of αSN that were, however, not a prerequisite for inhibitory activity. We also identified several phenyl-benzoxazol compounds that promoted αSN aggregation (proaggregators). These compounds may be useful tools to modulate αSN aggregation in cellula.


Subject(s)
Amyloid/chemistry , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Protein Aggregates/drug effects , alpha-Synuclein/chemistry , Amyloid/antagonists & inhibitors , Amyloid/ultrastructure , Fluorescence Resonance Energy Transfer/methods , High-Throughput Screening Assays/methods , Humans , Protein Conformation/drug effects , Protein Multimerization/drug effects , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/ultrastructure
2.
J Neurosci ; 33(16): 7020-6, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23595759

ABSTRACT

BACE1 is the rate-limiting enzyme that cleaves amyloid precursor protein (APP) to produce the amyloid ß peptides that accumulate in Alzheimer's disease (AD). BACE1, which is elevated in AD patients and APP transgenic mice, also cleaves the ß2-subunit of voltage-gated sodium channels (Navß2). Although increased BACE1 levels are associated with Navß2 cleavage in AD patients, whether Navß2 cleavage occurs in APP mice had not yet been examined. Such a finding would be of interest because of its potential impact on neuronal activity: previous studies demonstrated that BACE1-overexpressing mice exhibit excessive cleavage of Navß2 and reduced sodium current density, but the phenotype associated with loss of function mutations in either Navß-subunits or pore-forming α-subunits is epilepsy. Because mounting evidence suggests that epileptiform activity may play an important role in the development of AD-related cognitive deficits, we examined whether enhanced cleavage of Navß2 occurs in APP transgenic mice, and whether it is associated with aberrant neuronal activity and cognitive deficits. We found increased levels of BACE1 expression and Navß2 cleavage fragments in cortical lysates from APP transgenic mice, as well as associated alterations in Nav1.1α expression and localization. Both pyramidal neurons and inhibitory interneurons exhibited evidence of increased Navß2 cleavage. Moreover, the magnitude of alterations in sodium channel subunits was associated with aberrant EEG activity and impairments in the Morris water maze. Together, these results suggest that altered processing of voltage-gated sodium channels may contribute to aberrant neuronal activity and cognitive deficits in AD.


Subject(s)
Alzheimer Disease/complications , Cognition Disorders/etiology , Cognition Disorders/pathology , Neurons/metabolism , Sodium Channels/metabolism , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/metabolism , Biotinylation , Disease Models, Animal , Electroencephalography , Gene Expression Regulation/genetics , Glutamate Decarboxylase/metabolism , Humans , Maze Learning/physiology , Mice , Mice, Transgenic , Mutation/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/pathology , Neuropeptide Y/genetics , Neuropeptide Y/metabolism
3.
Cell ; 145(6): 813-4, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21663784

ABSTRACT

Abnormalities in the kynurenine pathway are associated with neurodegenerative disorders. Zwilling et al. (2011) show that inhibition of kynurenine 3-monooxygenase in the body's periphery leads to an increase in kyneuric acid, a neuroprotective compound, in the brain. This intervention ameliorates neurodegeneration in mouse models of Alzheimer's disease and Huntington's disease.

4.
Neurobiol Dis ; 43(1): 248-56, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21458569

ABSTRACT

Huntington's disease (HD) is a late-onset, neurodegenerative disease for which there are currently no cures nor disease-modifying treatments. Here we report the identification of several potential anti-inflammatory targets for HD using an ex vivo model of HD that involves the acute transfection of human mutant huntingtin-based constructs into rat brain slices. This model recapitulates key components of the human disease, including the formation of intracellular huntingtin protein (HTT)-containing inclusions and the progressive neurodegeneration of striatal neurons-both occurring within the native tissue context of these neurons. Using this "high-throughput biology" screening platform, we conducted a hypothesis-neutral screen of a collection of drug-like compounds which identified several anti-inflammatory targets that provided neuroprotection against HTT fragment-induced neurodegeneration. The nature of these targets provide further support for non-cell autonomous mechanisms mediating significant aspects of neuropathogenesis induced by mutant HTT fragment proteins.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Drug Delivery Systems/methods , Huntington Disease/drug therapy , Nerve Degeneration/drug therapy , Animals , Animals, Newborn , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Corpus Striatum/pathology , Drug Evaluation, Preclinical/methods , Humans , Huntington Disease/metabolism , Huntington Disease/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
5.
PLoS One ; 5(10): e13672, 2010 Oct 27.
Article in English | MEDLINE | ID: mdl-21060682

ABSTRACT

Mutations in LRRK2 (leucine-rich repeat kinase 2) have been identified as major genetic determinants of Parkinson's disease (PD). The most prevalent mutation, G2019S, increases LRRK2's kinase activity, therefore understanding the sites and substrates that LRRK2 phosphorylates is critical to understanding its role in disease aetiology. Since the physiological substrates of this kinase are unknown, we set out to reveal potential targets of LRRK2 G2019S by identifying its favored phosphorylation motif. A non-biased screen of an oriented peptide library elucidated F/Y-x-T-x-R/K as the core dependent substrate sequence. Bioinformatic analysis of the consensus phosphorylation motif identified several novel candidate substrates that potentially function in neuronal pathophysiology. Peptides corresponding to the most PD relevant proteins were efficiently phosphorylated by LRRK2 in vitro. Interestingly, the phosphomotif was also identified within LRRK2 itself. Autophosphorylation was detected by mass spectrometry and biochemical means at the only F-x-T-x-R site (Thr 1410) within LRRK2. The relevance of this site was assessed by measuring effects of mutations on autophosphorylation, kinase activity, GTP binding, GTP hydrolysis, and LRRK2 multimerization. These studies indicate that modification of Thr1410 subtly regulates GTP hydrolysis by LRRK2, but with minimal effects on other parameters measured. Together the identification of LRRK2's phosphorylation consensus motif, and the functional consequences of its phosphorylation, provide insights into downstream LRRK2-signaling pathways.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Cell Line , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Guanosine Triphosphate/metabolism , Humans , Hydrolysis , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Signal Transduction , Tandem Mass Spectrometry
6.
Int J Alzheimers Dis ; 2010: 864625, 2010 Oct 11.
Article in English | MEDLINE | ID: mdl-20981353

ABSTRACT

Mice transgenic for production of excessive or mutant forms of beta-amyloid differ from patients with Alzheimer's disease in the degree of inflammation, oxidative damage, and alteration of intermediary metabolism, as well as the paucity or absence of neuronal atrophy and cognitive impairment. Previous observers have suggested that differences in inflammatory response reflect a discrepancy in the state of the locus coeruleus (LC), loss of which is an early change in Alzheimer's disease but which is preserved in the transgenic mice. In this paper, we extend these observations by examining the effects of the LC on markers of oxidative stress and intermediary metabolism. We compare four groups: wild-type or Tg2576 Aß transgenic mice injected with DSP4 or vehicle. Of greatest interest were metabolites different between ablated and intact transgenics, but not between ablated and intact wild-type animals. The Tg2576_DSP4 mice were distinguished from the other three groups by oxidative stress and altered energy metabolism. These observations provide further support for the hypothesis that Tg2576 Aß transgenic mice with this ablation may be a more congruent model of Alzheimer's disease than are transgenics with an intact LC.

7.
Neurobiol Dis ; 39(3): 311-7, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20451607

ABSTRACT

The c-Jun N-terminal kinase (JNK) pathway potentially links together the three major pathological hallmarks of Alzheimer's disease (AD): development of amyloid plaques, neurofibrillary tangles, and brain atrophy. As activation of the JNK pathway has been observed in amyloid models of AD in association with peri-plaque regions and neuritic dystrophy, as we confirm here for Tg2576/PS(M146L) transgenic mice, we directly tested whether JNK inhibition could provide neuroprotection in a novel brain slice model for amyloid precursor protein (APP)-induced neurodegeneration. We found that APP/amyloid beta (Abeta)-induced neurodegeneration is blocked by both small molecule and peptide inhibitors of JNK, and provide evidence that this neuroprotection occurs downstream of APP/Abeta production and processing. Our findings demonstrate that Abeta can induce neurodegeneration, at least in part, through the JNK pathway and suggest that inhibition of JNK may be of therapeutic utility in the treatment of AD.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Nerve Degeneration/prevention & control , Neurons/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Analysis of Variance , Animals , Blotting, Western , Brain/pathology , Disease Models, Animal , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Mice, Transgenic , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurons/pathology , Rats , Rats, Sprague-Dawley , Signal Transduction
8.
Bioorg Med Chem Lett ; 20(7): 2326-9, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20202842

ABSTRACT

A novel class of pyridinyl aminohydantoins was designed and prepared as highly potent BACE1 inhibitors. Compound (S)-4g showed excellent potency with IC(50) of 20 nM for BACE1. X-ray crystallography indicated that the interaction between pyridine nitrogen and the tryptophan Trp76 was a key feature in the S2' region of the enzyme that contributed to increased potency.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Hydantoins/pharmacology , Pyridines/pharmacology , Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/chemistry , Crystallography, X-Ray , Humans , Hydantoins/chemistry , Models, Molecular , Protein Binding , Pyridines/chemistry , Structure-Activity Relationship
9.
Neurodegener Dis ; 7(1-3): 153-9, 2010.
Article in English | MEDLINE | ID: mdl-20197696

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by an increasing loss of dopaminergic neurons resulting in motor dysfunction. However, cognitive impairments in PD patients are a common clinical feature that has gained increased attention. OBJECTIVE: The purpose of the current study was to evaluate the effects of an MPTP-induced dopaminergic lesion in mice on social odor recognition (SOR) memory. METHODS: Mice were acutely treated with MPTP and evaluated for memory impairments in the SOR assay and characterized using biochemical and immunohistochemical methods approximately 2 weeks later. RESULTS: Here we demonstrate that SOR memory is sensitive to MPTP treatment and that it correlates with multiple measures of nigrostriatal integrity. MPTP treatment of C57BL/6N mice produced a profound decrease in dopamine levels, dopamine transporter binding and tyrosine hydroxylase immunoreactivity in the striatum. These impairments in stratial dopaminergic function were blocked by pretreatment with the MAO-B inhibitor deprenyl. Changes in the dopaminergic system parallel those observed in SOR with MPTP treatment impairing recognition memory in the absence of a deficit in odor discrimination during learning. Deprenyl pretreatment blocked the MPTP-induced impairment of SOR memory. CONCLUSION: The use of the SOR memory model may provide a preclinical method for evaluating cognitive therapies for PD.


Subject(s)
MPTP Poisoning/complications , MPTP Poisoning/psychology , Memory Disorders/etiology , Recognition, Psychology/physiology , Social Dominance , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Analysis of Variance , Animals , Disease Models, Animal , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Exploratory Behavior/drug effects , MPTP Poisoning/chemically induced , MPTP Poisoning/pathology , Male , Mice , Mice, Inbred C57BL , Substantia Nigra/drug effects , Tyrosine 3-Monooxygenase/metabolism
10.
J Pharmacol Exp Ther ; 331(2): 598-608, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19671883

ABSTRACT

The presenilin containing gamma-secretase complex is responsible for the regulated intramembraneous proteolysis of the amyloid precursor protein (APP), the Notch receptor, and a multitude of other substrates. gamma-Secretase catalyzes the final step in the generation of Abeta(40) and Abeta(42) peptides from APP. Amyloid beta-peptides (Abeta peptides) aggregate to form neurotoxic oligomers, senile plaques, and congophilic angiopathy, some of the cardinal pathologies associated with Alzheimer's disease. Although inhibition of this protease acting on APP may result in potentially therapeutic reductions of neurotoxic Abeta peptides, nonselective inhibition of the enzyme may cause severe adverse events as a result of impaired Notch receptor processing. Here, we report the preclinical pharmacological profile of GSI-953 (begacestat), a novel thiophene sulfonamide gamma-secretase inhibitor (GSI) that selectively inhibits cleavage of APP over Notch. This GSI inhibits Abeta production with low nanomolar potency in cellular and cell-free assays of gamma-secretase function, and displaces a tritiated analog of GSI-953 from enriched gamma-secretase enzyme complexes with similar potency. Cellular assays of Notch cleavage reveal that this compound is approximately 16-fold selective for the inhibition of APP cleavage. In the human APP-overexpressing Tg2576 transgenic mouse, treatment with this orally active compound results in a robust reduction in brain, plasma, and cerebral spinal fluid Abeta levels, and a reversal of contextual fear-conditioning deficits that are correlated with Abeta load. In healthy human volunteers, oral administration of a single dose of GSI-953 produces dose-dependent changes in plasma Abeta levels, confirming pharmacodynamic activity of GSI-953 in humans.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Sulfonamides/pharmacology , Thiophenes/pharmacology , Adolescent , Adult , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Binding, Competitive , CHO Cells , Cell Line , Cricetinae , Cricetulus , Dogs , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Fear/psychology , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Rats , Rats, Sprague-Dawley , Receptors, Notch/physiology , Signal Transduction/drug effects , Sulfonamides/pharmacokinetics , Sulfonamides/toxicity , Thiophenes/pharmacokinetics , Thiophenes/toxicity , Young Adult
11.
J Neurochem ; 108(6): 1539-49, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19183261

ABSTRACT

The molecular determinants of Sonic Hedgehog (Shh) signaling in mammalian cells and, in particular, those of the CNS are unclear. Here we report that primary cortical astrocyte cultures are highly responsive to both Shh protein and Hh Agonist 1.6, a selective, small molecule Smoothened agonist. Both agonists produced increases in mRNA expression of Shh-regulated gene targets, Gli-1 and Patched in a cyclopamine- and forskolin-sensitive manner. Using this model we show for the first time that Shh pathway activation mediates rapid increases in p38 MAPK phosphorylation, without altering phosphorylation of either extracellular-signal-regulated kinases or c-jun N-terminal kinases. Selective inhibition of p38 MAPK significantly attenuated Shh-dependent up-regulation of Gli-1, inter-alpha trypsin inhibitor and thrombomodulin mRNA, however did not affect expression of insulin-like growth factor 2 or a novel Shh target, membrane-associated guanylate kinase p55 subfamily member 6. Using RNAi and a constitutively-active mutant we show that Shh signaling to p38 MAPK and subsequent Gli-1 transcription requires G-protein receptor kinase 2. Taken together, these findings provide evidence for a central role of G-protein receptor kinase 2-dependent p38 MAPK activity in regulating Shh-mediated gene transcription in astrocytes.


Subject(s)
Astrocytes/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , Hedgehog Proteins/metabolism , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Animals, Newborn , Astrocytes/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Rats , Signal Transduction/drug effects , Time Factors , Transfection/methods
12.
FEBS J ; 276(2): 466-78, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19076219

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the leading cause of autosomal dominant Parkinson's disease, with age of onset and symptoms identical to those of idiopathic forms of the disorder. Several of these pathogenic mutations are thought to affect its kinase activity, so understanding the roles of LRRK2, and modulation of its kinase activity,may lead to novel therapeutic strategies for treating Parkinson's disease. In this study, highly purified, baculovirus-expressed proteins have been used,for the first time providing large amounts of protein that enable a thorough enzymatic characterization of the kinase activity of LRRK2.Although LRRK2 undergoes weak autophosphorylation, it exhibits high activity towards the peptidic substrate LRRKtide, suggesting that it is a catalytically efficient kinase. We have also utilized a time-resolved fluorescence resonance energy transfer (TR-FRET) assay format (Lantha-ScreenTM) to characterize LRRK2 and test the effects of nonselective kinase inhibitors. Finally, we have used both radiometric and TR-FRETassays to assess the role of clinical mutations affecting LRRK2's kinase activity. Our results suggest that only the most prevalent clinical mutation,G2019S, results in a robust enhancement of kinase activity with LRRKtideas the substrate. This mutation also affects binding of ATP to LRRK2,with wild-type binding being tighter (Km,app of 57 lm) than with theG2019S mutant (Km,app of 134 lm). Overall, these studies delineate the catalytic efficiency of LRRK2 as a kinase and provide strategies by which a therapeutic agent for Parkinson's disease may be identified.


Subject(s)
Protein Serine-Threonine Kinases/analysis , Protein Serine-Threonine Kinases/metabolism , Baculoviridae/genetics , Enzyme Activation , Gene Expression , Inhibitory Concentration 50 , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mutation/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Spectrometry, Fluorescence , Time Factors
13.
J Neurosci ; 28(45): 11445-53, 2008 Nov 05.
Article in English | MEDLINE | ID: mdl-18987181

ABSTRACT

Inheritance of the apoE4 allele (epsilon4) increases the risk of developing Alzheimer's disease; however, the mechanisms underlying this association remain elusive. Recent data suggest that inheritance of epsilon4 may lead to reduced apoE protein levels in the CNS. We therefore examined apoE protein levels in the brains, CSF and plasma of epsilon2/2, epsilon3/3, and epsilon4/4 targeted replacement mice. These apoE mice showed a genotype-dependent decrease in apoE levels; epsilon2/2 >epsilon3/3 >epsilon4/4. Next, we sought to examine the relative contributions of apoE4 and apoE3 in the epsilon3/4 mouse brains. ApoE4 represented 30-40% of the total apoE. Moreover, the absolute amount of apoE3 per allele was similar between epsilon3/3 and epsilon3/4 mice, implying that the reduced levels of total apoE in epsilon3/4 mice can be explained by the reduction in apoE4 levels. In culture medium from epsilon3/4 human astrocytoma or epsilon3/3, epsilon4/4 and epsilon3/4 primary astrocytes, apoE4 levels were consistently lower than apoE3. Secreted cholesterol levels were also lower from epsilon4/4 astrocytes. Pulse-chase experiments showed an enhanced degradation and reduced half-life of newly synthesized apoE4 compared with apoE3. Together, these data suggest that astrocytes preferentially degrade apoE4, leading to reduced apoE4 secretion and ultimately to reduced brain apoE levels. Moreover, the genotype-dependent decrease in CNS apoE levels, mirror the relative risk of developing AD, and suggest that low levels of total apoE exhibited by epsilon4 carriers may directly contribute to the disease progression, perhaps by reducing the capacity of apoE to promote synaptic repair and/or Abeta clearance.


Subject(s)
Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Brain/metabolism , Polymorphism, Genetic , Analysis of Variance , Animals , Animals, Newborn , Cells, Cultured , Culture Media, Conditioned/pharmacology , DNA Mutational Analysis , Dose-Response Relationship, Drug , Humans , Hydrocarbons, Fluorinated/pharmacology , Male , Mice , Mice, Transgenic , Neuroglia/drug effects , Neuroglia/metabolism , RNA, Messenger/metabolism , Sulfonamides/pharmacology , Time Factors
14.
Proc Natl Acad Sci U S A ; 105(25): 8754-9, 2008 Jun 24.
Article in English | MEDLINE | ID: mdl-18559859

ABSTRACT

The amyloid hypothesis states that a variety of neurotoxic beta-amyloid (Abeta) species contribute to the pathogenesis of Alzheimer's disease. Accordingly, a key determinant of disease onset and progression is the appropriate balance between Abeta production and clearance. Enzymes responsible for the degradation of Abeta are not well understood, and, thus far, it has not been possible to enhance Abeta catabolism by pharmacological manipulation. We provide evidence that Abeta catabolism is increased after inhibition of plasminogen activator inhibitor-1 (PAI-1) and may constitute a viable therapeutic approach for lowering brain Abeta levels. PAI-1 inhibits the activity of tissue plasminogen activator (tPA), an enzyme that cleaves plasminogen to generate plasmin, a protease that degrades Abeta oligomers and monomers. Because tPA, plasminogen and PAI-1 are expressed in the brain, we tested the hypothesis that inhibitors of PAI-1 will enhance the proteolytic clearance of brain Abeta. Our data demonstrate that PAI-1 inhibitors augment the activity of tPA and plasmin in hippocampus, significantly lower plasma and brain Abeta levels, restore long-term potentiation deficits in hippocampal slices from transgenic Abeta-producing mice, and reverse cognitive deficits in these mice.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Fibrinolysin/metabolism , Fibrinolytic Agents/metabolism , Animals , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Plasminogen Inactivators/metabolism , Tissue Plasminogen Activator/antagonists & inhibitors , Tissue Plasminogen Activator/metabolism
15.
Nat Neurosci ; 11(3): 334-43, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18297067

ABSTRACT

Estrogens have long been implicated in influencing cognitive processes, yet the molecular mechanisms underlying these effects and the roles of the estrogen receptors alpha (ERalpha) and beta (ERbeta) remain unclear. Using pharmacological, biochemical and behavioral techniques, we demonstrate that the effects of estrogen on hippocampal synaptic plasticity and memory are mediated through ERbeta. Selective ERbeta agonists increased key synaptic proteins in vivo, including PSD-95, synaptophysin and the AMPA-receptor subunit GluR1. These effects were absent in ERbeta knockout mice. In hippocampal slices, ERbeta activation enhanced long-term potentiation, an effect that was absent in slices from ERbeta knockout mice. ERbeta activation induced morphological changes in hippocampal neurons in vivo, including increased dendritic branching and increased density of mushroom-type spines. An ERbeta agonist, but not an ERalpha agonist, also improved performance in hippocampus-dependent memory tasks. Our data suggest that activation of ERbeta can regulate hippocampal synaptic plasticity and improve hippocampus-dependent cognition.


Subject(s)
Estrogen Receptor beta/metabolism , Estrogens/metabolism , Hippocampus/metabolism , Memory/physiology , Neuronal Plasticity/physiology , Neurons/metabolism , Animals , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Estradiol/metabolism , Estradiol/pharmacology , Estrogen Receptor beta/agonists , Estrogen Receptor beta/genetics , Estrogens/agonists , Estrogens/pharmacology , Female , Hippocampus/cytology , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/drug effects , Neurons/cytology , Neurons/drug effects , Organ Culture Techniques , Ovariectomy , Phosphorylation/drug effects , Rats , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
16.
Proc Natl Acad Sci U S A ; 105(1): 33-8, 2008 Jan 08.
Article in English | MEDLINE | ID: mdl-18162540

ABSTRACT

Rapamycin is an immunosuppressive immunophilin ligand reported as having neurotrophic activity. We show that modification of rapamycin at the mammalian target of rapamycin (mTOR) binding region yields immunophilin ligands, WYE-592 and ILS-920, with potent neurotrophic activities in cortical neuronal cultures, efficacy in a rodent model for ischemic stroke, and significantly reduced immunosuppressive activity. Surprisingly, both compounds showed higher binding selectivity for FKBP52 versus FKBP12, in contrast to previously reported immunophilin ligands. Affinity purification revealed two key binding proteins, the immunophilin FKBP52 and the beta1-subunit of L-type voltage-dependent Ca(2+) channels (CACNB1). Electrophysiological analysis indicated that both compounds can inhibit L-type Ca(2+) channels in rat hippocampal neurons and F-11 dorsal root ganglia (DRG)/neuroblastoma cells. We propose that these immunophilin ligands can protect neurons from Ca(2+)-induced cell death by modulating Ca(2+) channels and promote neurite outgrowth via FKBP52 binding.


Subject(s)
Calcium Channels/chemistry , Sirolimus/chemistry , Tacrolimus Binding Proteins/chemistry , Animals , Calcium/metabolism , Electrophysiology/methods , Humans , Immunophilins/metabolism , Immunosuppressive Agents/pharmacology , Ligands , Models, Chemical , Neurites/metabolism , Neuroblastoma/metabolism , Neurons/metabolism , Patch-Clamp Techniques , Protein Binding , Rats , Stroke/metabolism
17.
Mol Cell Neurosci ; 34(4): 621-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17336088

ABSTRACT

Recent studies show that intracellular cholesterol levels can modulate the processing of amyloid precursor protein to Abeta peptide. Moreover, cholesterol-rich apoE-containing lipoproteins may also promote Abeta clearance. Agonists of the liver X receptor (LXR) transcriptionally induce genes involved in intracellular lipid efflux and transport, including apoE. Thus, LXR agonists have the potential to both inhibit APP processing and promote Abeta clearance. Here we show that LXR agonist, TO901317, increased hippocampal ABCA1 and apoE and decreased Abeta42 levels in APP transgenic mice. TO901317 had no significant effects on levels of Abeta40, full length APP, or the APP processing products. Next, we examined the effects of TO901317 in the contextual fear conditioning paradigm; TO901317 completely reversed the contextual memory deficit in these mice. These data demonstrate that LXR agonists do not directly inhibit APP processing but rather facilitate the clearance of Abeta42 and may represent a novel therapeutic approach to Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , DNA-Binding Proteins/agonists , Hippocampus/metabolism , Memory/drug effects , Peptide Fragments/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Sulfonamides/pharmacology , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Alzheimer Disease/metabolism , Animals , Apolipoproteins E/metabolism , Hippocampus/drug effects , Humans , Hydrocarbons, Fluorinated , Liver X Receptors , Male , Memory/physiology , Mice , Mice, Transgenic , Orphan Nuclear Receptors , Reverse Transcriptase Polymerase Chain Reaction
18.
Proc Natl Acad Sci U S A ; 103(13): 5161-6, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16549764

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which numerous mouse models have been generated. In both AD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of beta-amyloid (Abeta)-containing plaques and neurodegeneration. Characterization of the timing and nature of preplaque dysfunction is important for understanding the progression of this disease and to identify pathways and molecular targets for therapeutic intervention. Hence, we have examined the progression of dysfunction at the morphological, functional, and behavioral levels in the Tg2576 mouse model of AD. Our data show that decreased dendritic spine density, impaired long-term potentiation (LTP), and behavioral deficits occurred months before plaque deposition, which was first detectable at 18 months of age. We detected a decrease in spine density in the outer molecular layer of the dentate gyrus (DG) beginning as early as 4 months of age. Furthermore, by 5 months, there was a decline in LTP in the DG after perforant path stimulation and impairment in contextual fear conditioning. Moreover, an increase in the Abeta42/Abeta40 ratio was first observed at these early ages. However, total amyloid levels did not significantly increase until approximately 18 months of age, at which time significant increases in reactive astrocytes and microglia could be observed. Overall, these data show that the perforant path input from the entorhinal cortex to the DG is compromised both structurally and functionally, and this pathology is manifested in memory defects long before significant plaque deposition.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Behavior, Animal/physiology , Synapses/pathology , Aging/physiology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Fear , Memory , Mice , Mice, Transgenic , Organ Size , Spine/pathology , Synapses/metabolism , Synaptophysin/metabolism , Time Factors
19.
Mol Pharmacol ; 67(4): 1119-27, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15644492

ABSTRACT

Transient receptor potential (TRP) genes encode a family of related ion-channel subunits. This family consists of cation-selective, calcium-permeable channels that include a group of vanilloid receptor channels (TRPV) implicated in pain and inflammation. These channels are activated by diverse stimuli, including capsaicin, lipids, membrane deformation, heat, and protons. Six members of the TRPV family have been identified that differ predominantly in their activation properties. However, in neurons, TRPV channels do not account for the observed diversity of responses to activators. By probing human and rat brain cDNA libraries to identify TRPV subunits, we identified a novel human TRPV1 RNA splice variant, TRPV1b, which forms functional ion channels that are activated by temperature (threshold, approximately 47 degrees C), but not by capsaicin or protons. Channels with similar activation properties were found in trigeminal ganglion neurons, suggesting that TRPV1b receptors are expressed in these cells and contribute to thermal nociception.


Subject(s)
Capsaicin/analogs & derivatives , Ion Channels/physiology , Amino Acid Sequence , Capsaicin/pharmacology , Cloning, Molecular , Humans , Ion Channels/chemistry , Ion Channels/genetics , Molecular Sequence Data , Ruthenium Red/pharmacology , Structure-Activity Relationship , TRPV Cation Channels , Temperature , Trigeminal Ganglion/chemistry , Trigeminal Ganglion/physiology
20.
J Neurosci ; 24(37): 7999-8008, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15371500

ABSTRACT

Transcriptional dysregulation by mutant huntingtin (Htt) protein has been implicated in the pathogenesis of Huntington's disease (HD). We find that cultured cells expressing mutant Htt and striatal cells from HD transgenic mice have elevated nuclear factor-kappaB (NF-kappaB) activity. Furthermore, NF-kappaB is concentrated in the nucleus of neurons in the brains of HD transgenic mice. In inducible PC12 cells and in HD transgenic mice, mutant Htt activates the IkappaB kinase complex (IKK), a key regulator of NF-kappaB. Activation of IKK is likely mediated by direct interaction with mutant Htt, because the expanded polyglutamine stretch and adjacent proline-rich motifs in mutant Htt interact with IKKgamma, a regulatory subunit of IKK. Activation of IKK may also influence the toxicity of mutant Htt, because expression of IKKgamma promotes aggregation and nuclear localization of mutant Htt exon-1. Moreover, in acute striatal slice cultures, inhibition of IKK activity with an N-terminally truncated form of IKKgamma blocks mutant Htt-induced toxicity in medium-sized spiny neurons (MSNs). In addition, blocking degradation of NF-kappaB inhibitors with a dominant-negative ubiquitin ligase beta-transducin repeat-containing protein also reduces the toxicity of mutant Htt in MSNs. Therefore, aberrant NF-kappaB activation may contribute to the neurodegeneration induced by mutant Htt.


Subject(s)
Gene Expression Regulation/physiology , NF-kappa B/physiology , Nerve Tissue Proteins/physiology , Nuclear Proteins/physiology , Protein Serine-Threonine Kinases/physiology , Amino Acid Motifs , Animals , Biolistics , Cell Line , Cell Line, Transformed , Corpus Striatum/cytology , Enzyme Activation , Exons/genetics , Gene Expression Regulation/drug effects , Genes, Reporter , Humans , Huntingtin Protein , I-kappa B Kinase , Interleukin-1/pharmacology , Kidney , Mice , Mice, Transgenic , Minisatellite Repeats , NF-kappa B/antagonists & inhibitors , Nerve Degeneration , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , PC12 Cells , Phosphorylation , Protein Binding , Protein Interaction Mapping , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/physiology , Transfection , Ubiquitin-Protein Ligases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...