Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38785957

ABSTRACT

RAMOSA1 (RA1) is a Cys2-His2-type (C2H2) zinc finger transcription factor that controls plant meristem fate and identity and has played an important role in maize domestication. Despite its importance, the origin of RA1 is unknown, and the evolution in plants is only partially understood. In this paper, we present a well-resolved phylogeny based on 73 amino acid sequences from 48 embryophyte species. The recovered tree topology indicates that, during grass evolution, RA1 arose from two consecutive SUPERMAN duplications, resulting in three distinct grass sequence lineages: RA1-like A, RA1-like B, and RA1; however, most of these copies have unknown functions. Our findings indicate that RA1 and RA1-like play roles in the nucleus despite lacking a traditional nuclear localization signal. Here, we report that copies diversified their coding region and, with it, their protein structure, suggesting different patterns of DNA binding and protein-protein interaction. In addition, each of the retained copies diversified regulatory elements along their promoter regions, indicating differences in their upstream regulation. Taken together, the evidence indicates that the RA1 and RA1-like gene families in grasses underwent subfunctionalization and neofunctionalization enabled by gene duplication.


Subject(s)
Evolution, Molecular , Phylogeny , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Embryophyta/genetics , Embryophyta/metabolism , Amino Acid Sequence
2.
BMC Genomics ; 24(1): 64, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36747121

ABSTRACT

BACKGROUND: C4 photosynthesis is a mechanism that plants have evolved to reduce the rate of photorespiration during the carbon fixation process. The C4 pathway allows plants to adapt to high temperatures and light while more efficiently using resources, such as water and nitrogen. Despite decades of studies, the evolution of the C4 pathway from a C3 ancestor remains a biological enigma. Interestingly, species with C3-C4 intermediates photosynthesis are usually found closely related to the C4 lineages. Indeed, current models indicate that the assembly of C4 photosynthesis was a gradual process that included the relocalization of photorespiratory enzymes, and the establishment of intermediate photosynthesis subtypes. More than a third of the C4 origins occurred within the grass family (Poaceae). In particular, the Otachyriinae subtribe (Paspaleae tribe) includes 35 American species from C3, C4, and intermediates taxa making it an interesting lineage to answer questions about the evolution of photosynthesis. RESULTS: To explore the molecular mechanisms that underpin the evolution of C4 photosynthesis, the transcriptomic dynamics along four different leaf segments, that capture different stages of development, were compared among Otachyriinae non-model species. For this, leaf transcriptomes were sequenced, de novo assembled, and annotated. Gene expression patterns of key pathways along the leaf segments showed distinct differences between photosynthetic subtypes. In addition, genes associated with photorespiration and the C4 cycle were differentially expressed between C4 and C3 species, but their expression patterns were well preserved throughout leaf development. CONCLUSIONS: New, high-confidence, protein-coding leaf transcriptomes were generated using high-throughput short-read sequencing. These transcriptomes expand what is currently known about gene expression in leaves of non-model grass species. We found conserved expression patterns of C4 cycle and photorespiratory genes among C3, intermediate, and C4 species, suggesting a prerequisite for the evolution of C4 photosynthesis. This dataset represents a valuable contribution to the existing genomic resources and provides new tools for future investigation of photosynthesis evolution.


Subject(s)
Biological Evolution , Poaceae , Poaceae/genetics , Transcriptome , Photosynthesis/genetics , Plants/genetics , Plant Leaves/genetics , Plant Leaves/metabolism
3.
Ann Bot ; 126(1): 85-101, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32206771

ABSTRACT

INTRODUCTION: The Indeterminate Domain (IDD) proteins are a plant-specific subclass of C2H2 Zinc Finger transcription factors. Some of these transcription factors play roles in diverse aspects of plant metabolism and development, but the function of most of IDD genes is unknown and the molecular evolution of the subfamily has not been explored in detail. METHODS: In this study, we mined available genome sequences of green plants (Viridiplantae) to reconstruct the phylogeny and then described the motifs/expression patterns of IDD genes. KEY RESULTS: We identified the complete set of IDD genes of 16 Streptophyta genomes. We found that IDD and its sister clade STOP arose by a duplication at the base of Streptophyta. Once on land, the IDD genes duplicated extensively, giving rise to at least ten lineages. Some of these lineages were lost in extant non-vascular plants and gymnosperms, but all of them were retained in angiosperms, duplicating profoundly in dicots and monocots and acquiring, at the same time, surprising heterogeneity in their C-terminal regions and expression patterns. CONCLUSIONS: IDDs were present in the last common ancestor of Streptophyta. On land, IDDs duplicated extensively, leading to ten lineages. Later, IDDs were recruited by angiosperms where they diversified greatly in number, C-terminal and expression patterns. Interestingly, such diversification occurred during the evolution of novel traits of the plant body. This study provides a solid framework of the orthology relationships of green land plant IDD transcription factors, thus increasing the accuracy of orthologue identification in model and non-model species and facilitating the identification of agronomically important genes related to plant metabolism and development.


Subject(s)
Cycadopsida , Magnoliopsida/genetics , Evolution, Molecular , Phylogeny , Plant Proteins/genetics , Plants
4.
New Phytol ; 219(1): 408-421, 2018 07.
Article in English | MEDLINE | ID: mdl-29635737

ABSTRACT

Plant transition to land required several regulatory adaptations. The mechanisms behind these changes remain unknown. Since the evolution of transcription factors (TFs) families accompanied this transition, we studied the HOMEODOMAIN LEUCINE ZIPPER (HDZ) TF family known to control key developmental and environmental responses. We performed a phylogenetic and bioinformatics analysis of HDZ genes using transcriptomic and genomic datasets from a wide range of Viridiplantae species. We found evidence for the existence of HDZ genes in chlorophytes and early-divergent charophytes identifying several HDZ members belonging to the four known classes (I-IV). Furthermore, we inferred a progressive incorporation of auxiliary motifs. Interestingly, most of the structural features were already present in ancient lineages. Our phylogenetic analysis inferred that the origin of classes I, III, and IV is monophyletic in land plants in respect to charophytes. However, class IIHDZ genes have two conserved lineages in charophytes and mosses that differ in the CPSCE motif. Our results indicate that the HDZ family was already present in green algae. Later, the HDZ family expanded accompanying critical plant traits. Once on land, the HDZ family experienced multiple duplication events that promoted fundamental neo- and subfunctionalizations for terrestrial life.


Subject(s)
Evolution, Molecular , Leucine Zippers/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Viridiplantae/physiology , Gene Duplication , Homeodomain Proteins/genetics , Multigene Family , Phylogeny , Streptophyta/genetics , Streptophyta/physiology , Viridiplantae/genetics
5.
PLoS One ; 11(3): e0151075, 2016.
Article in English | MEDLINE | ID: mdl-26950074

ABSTRACT

Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.


Subject(s)
Climate , Photosynthesis , Poaceae/metabolism , Droughts , Evolution, Molecular , Poaceae/physiology , Temperature
6.
Proc Natl Acad Sci U S A ; 109(30): 12225-30, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22773815

ABSTRACT

In grass inflorescences, a structure called the "pulvinus" is found between the inflorescence main stem and lateral branches. The size of the pulvinus affects the angle of the lateral branches that emerge from the main axis and therefore has a large impact on inflorescence architecture. Through EMS mutagenesis we have identified three complementation groups of recessive mutants in maize having defects in pulvinus formation. All mutants showed extremely acute tassel branch angles accompanied by a significant reduction in the size of the pulvinus compared with normal plants. Two of the complementation groups correspond to mutations in the previously identified genes, RAMOSA2 (RA2) and LIGULELESS1 (LG1). Mutants corresponding to a third group were cloned using mapped-based approaches and found to encode a new member of the plant-specific TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR) family of DNA-binding proteins, BRANCH ANGLE DEFECTIVE 1 (BAD1). BAD1 is expressed in the developing pulvinus as well as in other developing tissues, including the tassels and juvenile leaves. Both molecular and genetics studies show that RA2 is upstream of BAD1, whereas LG1 may function in a separate pathway. Our findings demonstrate that BAD1 is a TCP class II gene that functions to promote cell proliferation in a lateral organ, the pulvinus, and influences inflorescence architecture by impacting the angle of lateral branch emergence.


Subject(s)
Genes, Plant/genetics , Pulvinus/growth & development , Transcription Factors/metabolism , Zea mays/genetics , Base Sequence , Cell Proliferation , Cloning, Molecular , Ethyl Methanesulfonate , Genetic Complementation Test , Histocytochemistry , In Situ Hybridization , Microscopy, Confocal , Molecular Sequence Data , Mutagenesis , Mutation/genetics , Pulvinus/cytology , Pulvinus/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Transcription Factors/genetics , Zea mays/growth & development
7.
J Biol Chem ; 287(1): 347-356, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22074922

ABSTRACT

TCP proteins constitute a family of plant transcription factors with more than 20 members in angiosperms. They can be divided in two classes based on sequence homology and the presence of an insertion within the basic region of the TCP DNA binding and dimerization domain. Here, we describe binding site selection studies with the class I protein TCP16, showing that its DNA binding preferences are similar to those of class II proteins. Through sequence comparison and the analysis of mutants and chimeras of TCP16, TCP20 (class I), and TCP4 (class II), we established that the identity of residue 11 of the class I TCP domain or the equivalent residue 15 of the class II domain, whether it is Gly or Asp, determines a preference for a class I or a class II sequence, respectively. Footprinting analysis indicated that specific DNA contacts related to these preferences are established with one of the strands of DNA. The dimerization motif also influences the selectivity of the proteins toward class I and class II sequences and determines a requirement of an extended basic region in proteins with Asp-15. We postulate that differences in orientation of base-contacting residues brought about by the presence of either Gly or Asp are responsible for the binding site preferences of TCP proteins. Expression of repressor forms of TCP16 with Asp-11 or Gly-11 differently affects leaf development. TCP16-like proteins with Asp-11 in the TCP domain arose in rosids and may be related to developmental characteristics of this lineage of eudicots.


Subject(s)
Arabidopsis Proteins/metabolism , DNA/metabolism , Transcription Factors/metabolism , Amino Acid Motifs , Amino Acid Sequence , Arabidopsis , Arabidopsis Proteins/chemistry , Base Sequence , Binding Sites , DNA/genetics , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Substrate Specificity , Transcription Factors/chemistry
8.
Plant Cell ; 21(9): 2591-605, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19749151

ABSTRACT

AGAMOUS-like6 (AGL6) genes encode MIKC-type MADS box transcription factors and are closely related to SEPALLATA and AP1/FUL-like genes. Here, we focus on the molecular evolution and expression of the AGL6-like genes in grasses. We have found that AGL6-like genes are expressed in ovules, lodicules (second whorl floral organs), paleas (putative first whorl floral organs), and floral meristems. Each of these expression domains was acquired at a different time in evolution, indicating that each represents a distinct function of the gene product and that the AGL6-like genes are pleiotropic. Expression in the inner integument of the ovule appears to be an ancient expression pattern corresponding to the expression of the gene in the megasporangium and integument in gymnosperms. Expression in floral meristems appears to have been acquired in the angiosperms and expression in second whorl organs in monocots. Early in grass evolution, AGL6-like orthologs acquired a new expression domain in the palea. Stamen expression is variable. Most grasses have a single AGL6-like gene (orthologous to the rice [Oryza sativa] gene MADS6). However, rice and other species of Oryza have a second copy (orthologous to rice MADS17) that appears to be the result of an ancient duplication.


Subject(s)
Evolution, Molecular , MADS Domain Proteins/metabolism , Ovule/growth & development , Plant Proteins/metabolism , Poaceae/genetics , DNA, Plant/genetics , Gene Expression Regulation, Plant , Genes, Duplicate , MADS Domain Proteins/genetics , Molecular Sequence Data , Ovule/genetics , Ovule/metabolism , Phylogeny , Plant Proteins/genetics , Poaceae/growth & development , Poaceae/metabolism
9.
Am J Bot ; 96(3): 549-64, 2009 Mar.
Article in English | MEDLINE | ID: mdl-21628212

ABSTRACT

In grasses, inflorescence diversification and its correlation with species evolution are intriguing and not well understood. Part of this problem lies in our lack of comprehension about the inflorescence morphological complexity of grasses. We focused our study on the PCK clade (named for phosphoenol pyruvate carboxykinase), a well-supported monophyletic group for which the relationships among its taxa are not well resolved. Interestingly, the PCK clade has an extensive diversity of adult inflorescence forms. A comparative developmental approach can help us to understand the basis of such morphological differences as well as provide characters that can be used in phylogenetic studies of the group. Using SEM studies, we demonstrate that inflorescence morphology in this clade is even more complex than what is typically observed in adult forms. We describe a number of new characters, and some classical features previously used for taxonomic purposes are redefined on the basis of development. We also define four morphological groups combining adult inflorescence form and development, and we discuss some of the evolutionary aspects of inflorescence diversification in the PCK clade. Taxonomic delimitation among genera in the PCK clade remains confusing and unclear where molecular and morphological studies support different classifications.

10.
Evol Dev ; 8(3): 293-303, 2006.
Article in English | MEDLINE | ID: mdl-16686640

ABSTRACT

LEAFY HULL STERILE1 (LHS1) is an MIKC-type MADS-box gene in the SEPALLATA class. Expression patterns of LHS1 homologs vary among species of grasses, and may be involved in determining palea and lemma morphology, specifying the terminal floret of the spikelet, and sex determination. Here we present LHS1 expression data from Eleusine indica (subfamily Chloridoideae) and Megathyrsus maximus (subfamily Panicoideae) to provide further insights into the hypothesized roles of the gene. E. indica has spikelets with three to eight florets that mature acropetally; E. indica LHS1 (EiLHS1) is expressed in the palea and lemma of all florets. In contrast, M. maximus has spikelets with two florets that mature basipetally; M. maximus LHS1 (MmLHS1) is expressed in the palea and lemma of the distal floret only. These data are consistent with the hypothesis that LHS1 plays a role in determining palea and lemma morphology and specifies the terminal floret of basipetally maturing grass spikelets. However, LHS1 expression does not correlate with floret sex expression; MmLHS1 is restricted to the bisexual distal floret, whereas EiLHS1 is expressed in both sterile and bisexual floret meristems. Phylogenetic analyses reconstruct a complex pattern of LHS1 expression evolution in grasses. LHS1 expression within the gynoecium has apparently been lost twice, once before diversification of a major clade within tribe Paniceae, and once in subfamily Chloridoideae. These data suggest that LHS1 has multiple roles during spikelet development and may have played a role in the diversification of spikelet morphology.


Subject(s)
Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , Poaceae/genetics , Flowers/genetics , Flowers/metabolism , MADS Domain Proteins/metabolism , Meristem/genetics , Meristem/metabolism , Phylogeny , Poaceae/metabolism
11.
Am J Bot ; 92(4): 565-75, 2005 Apr.
Article in English | MEDLINE | ID: mdl-21652435

ABSTRACT

Inflorescence development in Panicum maximum and Urochloa plantaginea was comparatively studied with scanning electron and light microscopy to test the transfer of P. maximum to Urochloa and to look for developmental features applicable to future cladistic studies of the phosphoenol pyruvate carboxykinase (PCK) subtype of C(4) photosynthesis clade (P. maximum and some species of Brachiaria, Chaetium, Eriochloa, Melinis, and Urochloa). Eleven developmental features not discernable in the mature inflorescence were found: direction of branch differentiation; origins of primary branches; apical vs. intercalary development of the main axis; direction of spikelet differentiation; direction of glume, lemma and palea differentiation; position of the lower glume (in some cases); size of the floret meristem; pattern of distal floret development; pattern of gynoecium abortion; differential pollen development between proximal and distal floret; and glume elongation. Inflorescence homologies between P. maximum and U. plantaginea are also clarified. Panicum maximum and U. plantaginea differ not only in their mature inflorescence structure but also in eight fundamental developmental features that exclude P. maximum from Urochloa. The following developmental events are related to sex expression: size of floret meristem, gynoecium abortion, pollen development delay in the proximal floret, glume elongation and basipetal floret maturation at anthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...