Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770402

ABSTRACT

A detailed study of the dielectric behavior of printed capacitors is given, in which the dielectric consists of a thin (<1 µm) ceramic/polymer composite layer with high permittivities of εr 20-69. The used ink contains surface-modified Ba0.6Sr0.4TiO3 (BST), a polymeric crosslinking agent and a thermal initiator, which allows the immediate polymerization of the ink during printing, leading to homogenous layers. To validate the results of the calculated permittivities, different layer thicknesses of the dielectric are printed and the capacitances, as well as the loss factors, are measured. Afterwards, the exact layer thicknesses are determined with cross sectional SEM images of ion-etched samples. Then, the permittivities are calculated with the known effective area of the capacitors. Furthermore, the ink composition is varied to obtain different ceramic/polymer ratios and thus different permittivities. The packing density of all composites is analyzed via SEM to show possible pores and validate the target ratio, respectively. The correlation between the chosen ratio and the measured permittivity is discussed using models from the literature. In addition, the leakage current of some capacitors is measured and discussed. For that, the dielectric was printed on different bottom electrodes as the nature of the electrode was found to be crucial for the performance.

2.
Nanomaterials (Basel) ; 10(11)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233838

ABSTRACT

This paper shows a straightforward method for printing multilayer composite capacitors with three dielectric layers on flexible substrates. As known from multilayer ceramic chip capacitors (MLCCs), it is possible to create a parallel connection of the layers without enlarging the needed area. Hence, the overall capacitance is increased, as the capacitances of the single dielectric layers add up. To realize printed capacitors, a special ceramic/polymer composite ink is used. The ink consists of surface-modified Ba0.6Sr0.4TiO3 (BST), a polymeric crosslinking agent and a thermal initiator, which allows an immediate polymerization of the ink, leading to very homogenous layers. The dielectric behavior of the capacitors is examined for each completed dielectric layer (via impedance spectroscopy) so that the changes with every following layer can be analyzed. It is demonstrated that the concept works, and capacitors with up to 3420 pF were realized (permittivity of ~40). However, it was also shown that the biggest challenge is the printing of the needed silver electrodes. They show a strong coffee stain effect, leading to thicker edge areas, which are difficult to overprint. Only with the help of printed supporting structures was it possible to lower the failure rate when printing thin dielectric layers.

3.
ACS Appl Mater Interfaces ; 12(2): 2974-2982, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31845575

ABSTRACT

An innovative ceramic ink system for thin inkjet-printed dielectric layers is presented, with which it is possible to avoid undesired drying effects. This system contains surface-modified Ba0.6Sr0.4TiO3 (BST) particles, a cross-linking agent, and a thermal radical initiator. The polymerization starts immediately after the ink drop contacts the heated substrate and therefore leads to very homogeneous topographies. Since an organic/inorganic composite ink is used, no sintering is needed after printing and thus printing on flexible substrates is possible. A comparison of the printing and drying behavior between modified and nonmodified BST with the described ink system is performed. The successful surface modification is confirmed via X-ray photoelectron spectroscopy (XPS). Topographies of different printed structures are compared by white light interferometry, the occurring polymerization is confirmed by measurements with an oscillatory rheometer, layer thicknesses are determined by scanning electron microscopy (SEM) images, and the capacitance of a printed capacitor is measured via impedance spectroscopy. It is successfully shown that the developed ink system enables the production of thin ceramic layers (<1 µm) with very homogeneous topographies since undesired drying effects can be avoided. The printed dielectric layers on flexible substrates have a high ceramic content and a high permittivity of 40.

4.
Sci Rep ; 9(1): 13324, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527722

ABSTRACT

The preparation of fully inkjet printed capacitors containing ceramic/polymer composites as the dielectric material is presented. Therefore, ceramic/polymer composite inks were developed, which allow a fast one-step fabrication of the composite thick films. Ba0.6Sr0.4TiO3 (BST) is used as the ceramic component and poly(methyl methacrylate) (PMMA) as the polymer. The use of such composites allows printing on flexible substrates. Furthermore, it results in improved values for the permittivity compared to pure polymers. Three composite inks with varying ratio of BST to PMMA were used for the fabrication of composite thick films consisting of 33, 50 and 66 vol% BST, respectively. All inks lead to homogeneous structures with precise transitions between the different layers in the capacitors. Besides the microstructures of the printed thick films, the dielectric properties were characterized by impedance spectroscopy over a frequency range of 100 Hz to 200 kHz. In addition, the influence of a larger ceramic particle size was investigated, to raise permittivity. The printed capacitors exhibited dielectric constants of 20 up to 55 at 1 kHz. Finally, the experimental results were compared to different theoretical models and their suitability for the prediction of εcomposite was assessed.

SELECTION OF CITATIONS
SEARCH DETAIL
...