Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Gut ; 73(2): 298-310, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37793780

ABSTRACT

OBJECTIVE: Animal studies suggest that prebiotic, plant-derived nutrients could improve homoeostatic and hedonic brain functions through improvements in microbiome-gut-brain communication. However, little is known if these results are applicable to humans. Therefore, we tested the effects of high-dosed prebiotic fibre on reward-related food decision-making in a randomised controlled within-subject cross-over study and assayed potential microbial and metabolic markers. DESIGN: 59 overweight young adults (19 females, 18-42 years, body mass index 25-30 kg/m2) underwent functional task MRI before and after 14 days of supplementary intake of 30 g/day of inulin (prebiotics) and equicaloric placebo, respectively. Short chain fatty acids (SCFA), gastrointestinal hormones, glucose/lipid and inflammatory markers were assayed in fasting blood. Gut microbiota and SCFA were measured in stool. RESULTS: Compared with placebo, participants showed decreased brain activation towards high-caloric wanted food stimuli in the ventral tegmental area and right orbitofrontal cortex after prebiotics (preregistered, family wise error-corrected p <0.05). While fasting blood levels remained largely unchanged, 16S-rRNA sequencing showed significant shifts in the microbiome towards increased occurrence of, among others, SCFA-producing Bifidobacteriaceae, and changes in >60 predicted functional signalling pathways after prebiotic intake. Changes in brain activation correlated with changes in Actinobacteria microbial abundance and associated activity previously linked with SCFA production, such as ABC transporter metabolism. CONCLUSIONS: In this proof-of-concept study, a prebiotic intervention attenuated reward-related brain activation during food decision-making, paralleled by shifts in gut microbiota. TRIAL REGISTRATION NUMBER: NCT03829189.


Subject(s)
Overweight , Prebiotics , Animals , Female , Young Adult , Humans , Cross-Over Studies , Diet , Inulin , Fatty Acids, Volatile/metabolism , Feces/microbiology
2.
Cells ; 12(7)2023 03 23.
Article in English | MEDLINE | ID: mdl-37048046

ABSTRACT

BACKGROUND: Non-cholesterol sterols, as well as plant sterols, cross the blood-brain barrier and, thus, can be incorporated into cell membranes, affecting the cell's inflammatory response. The aim of our work was to develop an analytical protocol for a quantitative assessment of the sterol composition within the membrane microdomains of microglia. METHODS: A protocol for cell membrane isolation using OptiPrepTM gradient ultracentrifugation, in combination with a targeted mass spectrometry (LC-MS/MS)-based assay, was developed and validated for the quantitative analysis of free sterols in microglia cell membranes. RESULTS: Utilizing an established LC-MS/MS assay, cholesterol and seven non-cholesterol sterols were analyzed with a limit of detection from 0.001 to 0.05 mg/L. Applying the detergent-free isolation of SIM-A9 microglia cell membranes, cholesterol (CH), desmosterol (DE), lanosterol (LA) stigmasterol (ST), beta-sitosterol (SI) and campesterol (CA) were quantified with coefficients of variations between 6 and 29% (fractions 4-6, n = 5). The highest concentrations of non-CH sterols within the microglia plasma membranes were found in the microdomain region (DE>LA>SI>ST>CA), with ratios to CH ranging from 2.3 to 435 lower abundancies. CONCLUSION: By applying our newly developed and validated analytical protocol, we show that the non-CH sterol concentration is about 38% of the total sterol content in microglia membrane microdomains. Further investigations must clarify how changes in the non-sterol composition influence membrane fluidity and cell signaling.


Subject(s)
Phytosterols , Sterols , Sterols/metabolism , Chromatography, Liquid , Microglia/metabolism , Tandem Mass Spectrometry , Stigmasterol , Lanosterol , Cell Membrane/metabolism
3.
Acta Neurochir (Wien) ; 165(5): 1277-1287, 2023 05.
Article in English | MEDLINE | ID: mdl-36695932

ABSTRACT

BACKGROUND: It is suspected that microbiome-derived trimethylamine N-oxide (TMAO) may enhance platelet responsiveness and accordingly be thrombophilic. The purpose of this prospective observational study is to evaluate TMAO in patients with subarachnoid hemorrhage (SAH) and compare it with a control group. A secondary aim was to investigate TMAO in the cerebrospinal fluid (CSF) from SAH patients. This should provide a better understanding of the role of TMAO in the pathogenesis of SAH and its thrombotic complications. METHODS: The study included patients with diagnosed spontaneous SAH recruited after initial treatment on admission and patients with nerve, nerve root, or plexus disorders serving as controls. Blood samples were gathered from all patients at recruitment. Additionally, sampling of SAH patients in the intensive care unit continued daily for 14 days. The CSF was collected out of existing external ventricular drains whenever possible. RESULTS: Thirty-four patients diagnosed with SAH, and 108 control patients participated in this study. Plasma TMAO levels at baseline were significantly lower in the SAH group (1.7 µmol/L) compared to the control group (2.9 µmol/L). TMAO was detectable in the CSF (0.4 µmol/L) and significantly lower than in plasma samples of the SAH group at baseline. Plasma and CSF TMAO levels correlated positively. The TMAO levels did not differ significantly during the observation period of 15 days. CONCLUSIONS: Although we assumed that patients with higher TMAO levels were at higher risk for SAH a priori, plasma TMAO levels were lower in patients with SAH compared with control subjects with nerve, nerve root, or plexus disorders on admission to the hospital. A characteristic pattern of plasma TMAO levels in patients with SAH was not found.


Subject(s)
Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/therapy , Methylamines , Prospective Studies
4.
Nutrients ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36014773

ABSTRACT

Microbiome-derived trimethylamine N-oxide (TMAO) has been associated with platelet hyperreactivity and subsequent atherogenesis. Whether physiological TMAO-levels influence platelet-derived lipid mediators remains unknown. Little is known about pre-analytic factors potentially influencing TMAO concentrations. We aimed at developing a quantitative LC-MS/MS method to investigate in-vivo and in-vitro pre-analytical factors in TMAO analysis to properly assess the proposed activating effect of TMAO on platelets. TMAO, betaine, carnitine, and choline were analyzed by HILIC-ESI-MS/MS within 6 min total run time. Method validation included investigation of reproducibility, recovery, sensitivity, and in-vitro pre-analytical factors. A 24-h monitoring experiment was performed, evaluating in-vivo pre-analytical factors like daytime or diet. Finally, the effects of different TMAO concentrations on platelet activation and corresponding alterations of platelet-derived eicosanoid release were analyzed. The method showed high reproducibility (CVs ≤ 5.3%), good recovery rates (96-98%), and negligible in-vitro pre-analytical effects. The influence of in-vivo pre-analytical factors on TMAO levels was not observable within the applied experimental conditions. We did not find any correlation between TMAO levels and platelet activation at physiological TMAO concentrations, whereas platelet-derived eicosanoids presented activation of the cyclooxygenase and lipoxygenase pathways. In contrast to previously published results, we did not find any indications regarding diet dependency or circadian rhythmicity of TMAO levels. Our results do not support the hypothesis that TMAO increases platelet responsiveness via the release of lipid-mediators.


Subject(s)
Methylamines , Tandem Mass Spectrometry , Choline/metabolism , Choline/pharmacology , Chromatography, Liquid , Lipids , Methylamines/metabolism , Platelet Activation , Reproducibility of Results , Tandem Mass Spectrometry/methods
5.
Nutrients ; 14(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35745204

ABSTRACT

Apolipoprotein E (apoE) occurs on the majority of plasma lipoproteins and plays a major role in the lipid metabolism in the periphery and in the central nervous system. ApoE is a polymorphic protein with three common isoforms, apoE2, apoE3 and apoE4, derived from respective alleles ε2, ε3 and ε4. The aim of this study was to develop a sample pretreatment protocol combined with rapid mass spectrometry (MS)-based assay for simultaneous apolipoprotein profiling and apoE phenotype identification. This assay was validated in 481 samples from patients with stable atherosclerotic cardiovascular disease (ASCVD) and applied to study association with mild cognitive impairment (MCI) in the LIFE Adult study, including overall 690 study subjects. Simultaneous quantification of 8−12 major apolipoproteins including apoA-I, apoB-100 and apoE could be performed within 6.5 min. Phenotyping determined with the developed MS assay had good agreement with the genotyping by real-time fluorescence PCR (97.5%). ApoE2 isoform was associated with the highest total apoE concentration compared to apoE3 and apoE4 (p < 0.001). In the subgroup of diabetic atherosclerotic cardiovascular disease (ASCVD) patients, apoE2 isoform was related to higher apoC-I levels (apoE2 vs. apoE3, p < 0.05), while in the subgroup of ASCVD patients under statin therapy apoE2 was related to lower apoB-100 levels (apoE2 vs. apoE3/apoE4, p < 0.05). A significant difference in apoE concentration observed between mild cognitive impairment (MCI) subjects and controls was confirmed for each apoE phenotype. In conclusion, this study provides evidence for the successful implementation of an MS-based apoE phenotyping assay, which can be used to assess phenotype effects on plasma lipid and apolipoprotein levels.


Subject(s)
Cardiovascular Diseases , Cognitive Dysfunction , Apolipoprotein B-100 , Apolipoprotein E2/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4 , Apolipoproteins E/metabolism , Humans , Mass Spectrometry , Protein Isoforms
6.
Nutrients ; 14(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35405932

ABSTRACT

Lipids are increasingly recognized as bioactive mediators of extracellular vesicle (EV) functions. However, while EV proteins and nucleic acids are well described, EV lipids are insufficiently understood due to lack of adequate quantitative methods. We adapted an established targeted and quantitative mass spectrometry (LC-MS/MS) method originally developed for analysis of 94 eicosanoids and seven polyunsaturated fatty acids (PUFA) in human plasma. Additionally, the influence of freeze-thaw (FT) cycles, injection volume, and extraction solvent were investigated. The modified protocol was applied to lipidomic analysis of differently polarized macrophage-derived EVs. We successfully quantified three PUFAs and eight eicosanoids within EVs. Lipid extraction showed reproducible PUFA and eicosanoid patterns. We found a particularly high impact of FT cycles on EV lipid profiles, with significant reductions of up to 70%. Thus, repeated FT will markedly influence analytical results and may alter EV functions, emphasizing the importance of a standardized sample pretreatment protocol for the analysis of bioactive lipids in EVs. EV lipid profiles differed largely depending on the polarization of the originating macrophages. Particularly, we observed major changes in the arachidonic acid pathway. We emphasize the importance of a standardized sample pretreatment protocol for the analysis of bioactive lipids in EVs.


Subject(s)
Extracellular Vesicles , Lipidomics , Chromatography, Liquid/methods , Eicosanoids/metabolism , Extracellular Vesicles/metabolism , Fatty Acids, Unsaturated , Humans , Tandem Mass Spectrometry/methods
7.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948003

ABSTRACT

Plant sterols (PSs) cannot be synthesized in mammals and are exclusively diet-derived. PSs cross the blood-brain barrier and may have anti-neuroinflammatory effects. Obesity is linked to lower intestinal uptake and blood levels of PSs, but its effects in terms of neuroinflammation-if any-remain unknown. We investigated the effect of high-fat diet-induced obesity on PSs in the brain and the effects of the PSs campesterol and ß-sitosterol on in vitro microglia activation. Sterols (cholesterol, precursors, PSs) and polyunsaturated fatty acid-derived lipid mediators were measured in the food, blood, liver and brain of C57BL/6J mice. Under a PSs-poor high-fat diet, PSs levels decreased in the blood, liver and brain (>50%). This effect was reversible after 2 weeks upon changing back to a chow diet. Inflammatory thromboxane B2 and prostaglandin D2 were inversely correlated to campesterol and ß-sitosterol levels in all brain regions. PSs content was determined post mortem in human cortex samples as well. In vitro, PSs accumulate in lipid rafts isolated from SIM-A9 microglia cell membranes. In summary, PSs levels in the blood, liver and brain were associated directly with PSs food content and inversely with BMI. PSs dampen pro-inflammatory lipid mediators in the brain. The identification of PSs in the human cortex in comparable concentration ranges implies the relevance of our findings for humans.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Acids, Unsaturated/analysis , Lipidomics/methods , Microglia/cytology , Neuroinflammatory Diseases/metabolism , Obesity/metabolism , Phytosterols/analysis , Animal Feed , Animals , Cells, Cultured , Cholesterol/analogs & derivatives , Cholesterol/analysis , Chromatography, Liquid , Disease Models, Animal , Humans , Liver/chemistry , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuroinflammatory Diseases/chemically induced , Obesity/chemically induced , Phytosterols/blood , Sitosterols/analysis , Tandem Mass Spectrometry
8.
PLoS One ; 16(9): e0257921, 2021.
Article in English | MEDLINE | ID: mdl-34587222

ABSTRACT

Obesity arising from excessive dietary fat intake is a risk factor for cognitive decline, dementia and neurodegenerative diseases, including Alzheimer's disease. Here, we studied the effect of long-term high-fat diet (HFD) (24 weeks) and return to normal diet (ND) on behavioral features, microglia and neurons in adult male C57BL/6J mice. Consequences of HFD-induced obesity and dietary changes on general health (coat appearance, presence of vibrissae), sensory and motor reflexes, learning and memory were assessed by applying a phenotypic assessment protocol, the Y maze and Morris Water Maze test. Neurons and microglia were histologically analyzed within the mediobasal hypothalamus, hippocampus and frontal motor cortex after long-term HFD and change of diet. Long periods of HFD caused general health issues (coat alterations, loss of vibrissae), but did not affect sensory and motor reflexes, emotional state, memory and learning. Long-term HFD increased the microglial response (increased Iba1 fluorescence intensity, percentage of Iba1-stained area and Iba1 gene expression) within the hypothalamus, but not in the cortex and hippocampus. In neither of these regions, neurodegeneration or intracellular lipid droplet accumulation was observed. The former alterations were reversible in mice whose diet was changed from HFD to ND. Taken together, long periods of excessive dietary fat alone do not cause learning deficits or spatial memory impairment, though HFD-induced obesity may have detrimental consequences for cognitive flexibility. Our data confirm the selective responsiveness of hypothalamic microglia to HFD.


Subject(s)
Calcium-Binding Proteins/metabolism , Cognitive Dysfunction/etiology , Diet, High-Fat/adverse effects , Microfilament Proteins/metabolism , Obesity/psychology , Animals , Calcium-Binding Proteins/genetics , Cerebral Cortex/metabolism , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hippocampus/metabolism , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Microfilament Proteins/genetics , Morris Water Maze Test/drug effects , Obesity/chemically induced , Obesity/genetics , Obesity/metabolism , Spatial Memory/drug effects
9.
Undersea Hyperb Med ; 47(4): 539-549, 2020.
Article in English | MEDLINE | ID: mdl-33227829

ABSTRACT

Background: The popularity of apneic diving is continually growing. As apnea diving substantially burdens the cardiovascular system, special focus is warranted. Regarding inflammation processes and associated inflammatory-related diseases (e.g., cardiovascular diseases), eicosanoids play an important role. This study aims to investigate polyunsaturated fatty acids (PUFAs) and eicosanoids in voluntary apnea divers, and so to further improve understanding of pathophysiological processes focusing on proinflammatory effects of temporarily hypercapnic hypoxia.. Methods: The concentration of PUFAs and eicosanoids were investigated in EDTA plasma in apnea divers (n=10) before and immediately after apnea, 0.5 hour and four hours later, applying liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: Mean age was 41±10 years, and divers performed a mean breath-hold time of 317±111 seconds. PUFAs, eicosanoids and related lipids could be classified in four different kinetical reaction groups following apnea. The first group (e.g., Ω-6 and Ω-3-PUFAs) showed an immediate concentration increase followed by a decrease below baseline four hours after apnea. The second group (e.g., thromboxane B2) showed a slower increase, with its maximum concentration 0.5 hour post-apnea followed by a decrease four hours post-apnea. Group 3 (9- and 13-hydroxyoctadecadienoic acid) is characterized by two concentration increase peaks directly after apnea and four hours afterward compared to baseline. Group 4 (e.g., prostaglandin D2) shows no clear response. Conclusion: Changes in the PUFA metabolism after even a single apnea revealed different kinetics of pro- and anti-inflammatory regulations and changes for oxidative stress levels. Due to the importance of these mediators, apnea diving should be evaluated carefully and be performed only with great caution against the background of cardiovascular diseases and inflammation processes.


Subject(s)
Apnea/blood , Breath Holding , Diving/physiology , Eicosanoids/blood , Fatty Acids, Unsaturated/blood , Adult , Chromatography, Liquid/methods , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/blood , Female , Humans , Hydroxyeicosatetraenoic Acids/blood , Male , Middle Aged , Prospective Studies , Prostaglandin D2/blood , Tandem Mass Spectrometry/methods , Thromboxane B2/blood , Time Factors
10.
Anal Bioanal Chem ; 412(10): 2211-2223, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31865417

ABSTRACT

Polyunsaturated fatty acids (PUFAs) and eicosanoids are important mediators of inflammation. The functional role of eicosanoids in metabolic-syndrome-related diseases has been extensively studied. However, their role in neuroinflammation and the development of neurodegenerative diseases is still unclear. The aim of this study was the development of a sample pretreatment protocol for the simultaneous analysis of PUFAs and eicosanoids in mouse liver and brain. Liver and brain samples of male wild-type C57BL/6J mice (11-122 mg) were used to investigate conditions for tissue rinsing, homogenization, extraction, and storage. A targeted liquid chromatography-negative electrospray ionization tandem mass spectrometry method was applied to quantify 7 PUFAs and 94 eicosanoids. The final pretreatment protocol consisted of a 5-min homogenization step by sonication in 650 µL n-hexane/2-propanol (60:40 v/v) containing 2,6-di-tert-butyl-4-methylphenol at 50 µg/mL. Homogenates representing 1 mg tissue were extracted in a single step with n-hexane/2-propanol (60:40 v/v) containing 0.1% formic acid. Autoxidation was prevented by addition of 2,6-di-tert-butyl-4-methylphenol at 50 µg/mL and keeping the samples at 4 °C during sample preparation. Extracts were dried under nitrogen and reconstituted in liquid chromatography eluent before analysis. Recovery was determined to range from 45% to 149% for both liver and brain tissue. Within-run and between-run variability ranged between 7% and 18% for PUFAs and between 1% and 24% for eicosanoids. In liver, 7 PUFAs and 15 eicosanoids were quantified; in brain, 6 PUFAs and 21 eicosanoids had significant differences within the brain substructures. In conclusion, a robust and reproducible sample preparation protocol for the multiplexed analysis of PUFAs and eicosanoids by liquid chromatography-tandem mass spectrometry in liver and discrete brain substructures was developed.


Subject(s)
Chromatography, High Pressure Liquid/methods , Eicosanoids/chemistry , Fatty Acids, Unsaturated/chemistry , Liver/chemistry , Tandem Mass Spectrometry/methods , Animals , Brain/metabolism , Brain Chemistry , Eicosanoids/metabolism , Fatty Acids, Unsaturated/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
11.
Anal Chim Acta ; 1037: 245-255, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30292299

ABSTRACT

A liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI(+)-MS/MS) assay was developed and qualified for analyzing 35 analytes of the cholesterol metabolism, including free cholesterol, 17 free, non-esterified oxysterols and 17 free and conjugated bile acids in plasma and cerebrospinal fluid. As internal standards, 25 commercially available stable deuterium-labeled analogs of the analytes were used. Pre-analytical investigations included stability tests of analyte concentrations affected by different anticoagulation additives: lithium heparin-, citrate-, EDTA-K3-stabilized plasma and serum, and the stability in EDTA whole blood at RT. This LC-ESI(+)-MS/MS method was successfully applied for the analysis of paired serum/cerebrospinal fluid samples of patients with and without blood-brain barrier disturbance, as well as of 100 plasma samples of a LIFE-Adult study sub-cohort. A fast and simple sample preparation including protein precipitation and on-line solid-phase extraction was developed. As little as 55 µL of human plasma/serum or cerebrospinal fluid were needed for the analysis. It was possible to separate isomeric oxysterols and bile acids within 23 min using a C18 core-shell column. The assay is capable of quantifying in a linear range of 0.8-250 ng mL-1 for free hydroxycholesterols, 0.2-10 ng mL-1 for dihydroxycholesterols, 0.2-500 ng mL-1 for bile acids and 16-2000 µg mL-1 for cholesterol with acceptable accuracy and precision. In cerebrospinal fluid one free oxysterols, five free and five conjugated bile acids could be quantified. No significant differences between patients with and without blood-brain barrier disturbance were obtained. In the LIFE-Adult sub-cohort two free oxysterols, four free and seven conjugated bile acids could be quantified in EDTA plasma. Men showed significantly higher concentrations of 26-OHC than women (p = 0.035). Furthermore, in women lower levels of cholic acid, glycocholic acid, glycodeoxycholic acid, chenodeoxycholic acid, glycochenodeoxycholic acid, glycoursodeoxycholic acid, glycolithocholic acid and higher levels of taurocholic acid, taurochenodeoxycholic acid, ursodeoxycholic acid/hyodeoxycholic acid were quantified.


Subject(s)
Bile Acids and Salts/blood , Bile Acids and Salts/cerebrospinal fluid , Oxysterols/blood , Oxysterols/cerebrospinal fluid , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Chromatography, Liquid , Humans , Oxysterols/chemistry , Oxysterols/metabolism , Solid Phase Extraction , Tandem Mass Spectrometry
12.
Methods Mol Biol ; 1730: 111-121, 2018.
Article in English | MEDLINE | ID: mdl-29363070

ABSTRACT

The increasing interest in the analysis of triglyceride (TG) species and the individual fatty acid (FA) composition requires expeditious and reliable quantification strategies. The utilization of flow injection analysis (FIA) coupled to quadrupole tandem mass spectrometry (MS/MS) for the simultaneous quantitation of TG and identification of FA composition facilitates the multiplexed verification of various biomarkers from small sample quantities. Enzymatic methods based on saponification and glycerol analysis are not suited for the determination of the FA distribution in TGs. This protocol proposes a procedure for the establishment of a relative quantitation method for middle- to high-abundance plasma TGs and the corresponding FA composition. Essential topics as FIA-MS/MS method development as well as sample preparation and validation strategies are described in detail.


Subject(s)
Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Triglycerides/blood , Flow Injection Analysis/methods , Humans
13.
Proteomics ; 18(3-4)2018 02.
Article in English | MEDLINE | ID: mdl-29280342

ABSTRACT

Laborious sample pretreatment of biological samples represents the most limiting factor for the translation of targeted proteomics assays from research to clinical routine. An optimized method for the simultaneous quantitation of 12 major apolipoproteins (apos) combining on-line SPE and fast LC-MS/MS analysis in 6.5 min total run time was developed, reducing the manual sample pretreatment time of 3 µL serum or plasma by 60%. Within-run and between-day imprecisions below 10 and 15% (n = 10) and high recovery rates (94-131%) were obtained applying the high-throughput setup. High-quality porcine trypsin was used, which outperformed cost-effective bovine trypsin regarding digestion efficiency. Comparisons with immunoassays and another LC-MS/MS assay demonstrated good correlation (Pearson's R: 0.81-0.98). Further, requirements on sample quality concerning sampling, processing, and long-term storage up to 1 year were investigated revealing significant influences of the applied sampling material and coagulant on quantitation results. Apo profiles of 1339 subjects of the LIFE-Adult-Study were associated with lifestyle and physiological parameters as well as establish parameters of lipid metabolism (e.g., triglycerides, cholesterol). Besides gender effects, most significant impact was seen regarding lipid-lowering medication. In conclusion, this novel highly standardized, high-throughput targeted proteomics assay utilizes a fast, simultaneous analysis of 12 apos from least sample amounts.


Subject(s)
Apolipoproteins/blood , Chromatography, Liquid/methods , High-Throughput Screening Assays/methods , Proteomics/methods , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Aged , Female , Humans , Male , Middle Aged , Online Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...