Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 7): 127488, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37852395

ABSTRACT

Herein, biobased composite materials based on poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) as matrices, sodium hexametaphosphate microparticles (E452i, food additive microparticles, 1 and 5 wt%) as antimicrobial filler and acetyl tributyl citrate (ATBC, 15 wt%) as plasticizer, were developed for potential food packaging applications. Two set of composite films were obtained by melt-extrusion and compression molding, i) based on PLA matrix and ii) based on Ecovio® matrix (PLA/PBAT blend). Thermal characterization by thermogravimetric analysis and differential scanning calorimetry demonstrated that the incorporation of E452i particles improved thermal stability and crystallinity, while the mechanical test showed an increase in the Young's modulus. E452i particles also provide antimicrobial properties to the films against food-borne bacteria Listeria innocua and Staphylococcus aureus, with bacterial reduction percentages higher than 50 % in films with 5 wt% of particles. The films also preserved their disintegradability as demonstrated by an exhaustive characterization of the films under industrial composting conditions. Therefore, the results obtained in this work reveal the potential of these biocomposites as appropriated materials for antibacterial and compostable food packaging films.


Subject(s)
Food Packaging , Polyesters , Polyesters/chemistry , Food Packaging/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
2.
Sci Total Environ ; 902: 166003, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37549707

ABSTRACT

The accumulation of microplastics (MPs) in the environment as well as their presence in foods and humans highlight the urgent need for studies on the effects of these particles on humans. Polylactic acid (PLA) is the most widely used bioplastic in the food industry and medical field. Despite its biodegradability, biocompatibility, and "Generally Recognized As Safe" (GRAS) status, recent animal model studies have shown that PLA MPs can alter the intestinal microbiota; however, to date, no studies have been reported on the possible gut and health consequences of its intake by humans. This work simulates the ingestion of a realistic daily amount of PLA MPs and their pass through the gastrointestinal tract by combining the INFOGEST method and the gastrointestinal simgi® model to evaluate possible effects on the human colonic microbiota composition (16S rRNA gene sequencing analysis) and metabolic functionality (lactic acid and short-chain fatty acids (SCFA) production). Although PLA MPs did not clearly alter the microbial community homeostasis, increased Bifidobacterium levels tended to increase in presence of millimetric PLA particles. Furthermore, shifts detected at the functional level suggest an alteration of microbial metabolism, and a possible biotransformation of PLA by the human microbial colonic community. Raman spectroscopy and field emission scanning electron microscopy (FESEM) characterization revealed morphological changes on the PLA MPs after the gastric phase of the digestion, and the adhesion of organic matter as well as a microbial biofilm, with surface biodegradation, after the intestinal and colonic phases. With this evidence and the emerging use of bioplastics, understanding their impact on humans and potential biodegradation through gastrointestinal digestion and the human microbiota merits critical investigation.


Subject(s)
Gastrointestinal Microbiome , Microplastics , Humans , Animals , Plastics , RNA, Ribosomal, 16S , Polyesters , Digestion
3.
Sci Rep ; 9(1): 10809, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31346250

ABSTRACT

In this study, real-time and in-situ permittivity measurements under intense microwave electromagnetic fields are proposed as a powerful technique for the study of microwave-enhanced thermal processes in materials. In order to draw reliable conclusions about the temperatures at which transformations occur, we address how to accurately measure the bulk temperature of the samples under microwave irradiation. A new temperature calibration method merging data from four independent techniques is developed to obtain the bulk temperature as a function of the surface temperature in thermal processes under microwave conditions. Additionally, other analysis techniques such as Differential Thermal Analysis (DTA) or Raman spectroscopy are correlated to dielectric permittivity measurements and the temperatures of thermal transitions observed using each technique are compared. Our findings reveal that the combination of all these procedures could help prove the existence of specific non-thermal microwave effects in a scientifically meaningful way.

SELECTION OF CITATIONS
SEARCH DETAIL
...