Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Imaging Radiat Oncol ; 26: 100448, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37252251

ABSTRACT

Background and purpose: Tumor motion and delivery efficiency are two main challenges of lung stereotactic body radiotherapy (SBRT). The present work implemented the deep inspiration breath hold technique (DIBH) with surface guided radiation therapy (SGRT) on closed-bore linacs and investigated the correlation between SGRT data and internal target position. Materials and methods: Thirteen lung SBRT patients treated in DIBH using a closed-bore gantry linac and a ring-mounted SGRT system were retrospectively analysed. Visual coaching was used to achieve DIBH with a ± 1 mm threshold window in the anterior-posterior direction. Three kV-CBCTs were added to the treatment workflow and examined offline to verify intra-fraction tumor position. Surface-based DIBH was analysed using SGRT treatment reports and an in-house python script. Data from 73 treatment sessions and 175 kV-CBCTs were studied. Correlations between target and surface positions were studied with Linear Mixed Models. Results: Median intra-fraction tumor motion was 0.8 mm (range: 0.7-1.3 mm) in the anterior-posterior direction, 1.2 mm (range: 1-1.7 mm) in the superior-inferior direction, and 1 mm (range: 0.7-1.1 mm) in the left-right direction, with rotations of <1° (range: 0.6°-1.1°) degree in all three directions. Planned target volumes and healthy lung volumes receiving 12.5 Gy and 13.5 Gy were reduced on average by 67% and 54%, respectively. Conclusions: Lung SBRT in DIBH with the ring-mounted SGRT system proved reproducible. The surface monitoring provided by SGRT was found to be a reliable surrogate for internal target motion. Moreover, the implementation of DIBH technique helped reduce target volumes and lung doses.

2.
Phys Med ; 108: 102567, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36996575

ABSTRACT

OBJECTIVE: To determine the overall tracking errors inherent to the co-calibration procedure of AlignRT InBore™'s (Vision RT Ltd., London, UK) ceiling-mounted and ring-mounted cameras. METHODS: Extrinsic calibration errors related to the mismatch between ceiling and InBore cameras' isocentres and treatment isocentre were determined using MV images and the SRS package and compared to traditional plate-based error. Next, using a realistic anthropomorphic female phantom, intrinsic calibration errors were determined while varying source-skin distance (80 to 100 cm), breast board inclination (0° to 12.5°), room lighting conditions (0 to 258 lx), skin colour (dark, white and natural skin colour), and pod occlusion. RESULTS: MV images of the cube proved plate-based calibration to suffer from large errors especially in the vertical direction (up to 2 mm). Intrinsic calibration errors were considerably lower. Indeed, RTD values of ceiling and InBore cameras showed little variability with isocentre depth (within 1.0 mm/0.4°), surface orientation and breast board inclination (within 0.7 mm/0.3°), changing lighting conditions (within 0.1 mm/0.2°), skin colour/tone (within 0.3 mm/0.3°) and camera pod occlusion (within 0.3 mm/0.2°). CONCLUSION: The use of MV-images proved critical to maintain co-calibrating errors of ceiling and InBore cameras to Halcyon's treatment isocentre below 1 mm.


Subject(s)
Phantoms, Imaging , Calibration , Humans , Female , Skin/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...