Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2258, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38278839

ABSTRACT

Fridericia formosa (Bureau) L.G. Lohmann (Bignonaceae) is a neotropical liana species found in the Cerrado biome in Brazil. It has been of great interest to the scientific community due to its potential as a source of new antivirals, including xanthones derived from mangiferin. In this context, the present study aimed to characterize and quantify the xanthones present in the ethanol extract of this species using high performance liquid chromatography. Additionally, the antiviral activity against Chikungunya, Zika, and Mayaro viruses was evaluated. The chromatographic analyses partially identified twenty-six xanthones, among which only fourteen had already been described in the literature. The xanthones mangiferin, 2'-O-trans-caffeoylmangiferin, and 2'-O-trans-coumaroylmangiferin, are present in higher quantities in the extract, at concentrations of 9.65%, 10.68%, and 3.41% w/w, respectively. In antiviral assays, the extract inhibited the multiplication cycle only for the Mayaro virus with a CE50 of 36.1 µg/mL. Among the isolated xanthones, 2'-O-trans-coumaroylmangiferin and 2'-O-trans-cinnamoylmangiferin inhibited the viral cytopathic effect with CE50 values of 180.6 and 149.4 µg/mL, respectively. Therefore, the extract from F. formosa leaves, which has a high content of xanthones, has antiviral potential and can be a source of new mangiferin derivatives.


Subject(s)
Bignoniaceae , Xanthones , Zika Virus Infection , Zika Virus , Taiwan , Xanthones/pharmacology , Xanthones/chemistry , Plant Extracts/chemistry , Ethanol , Antiviral Agents/pharmacology
2.
Eur J Med Chem ; 258: 115622, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37441850

ABSTRACT

Chagas disease (CD) is a neglected tropical disease endemic in 21 countries and affects about 8 million people around the world. The pharmacotherapy for this disease is limited to two drugs (Benznidazole and Nifurtimox) and both are associated with important limitations, as low cure rate in the chronic phase of the disease, high toxicity and increasing resistance by Trypanosoma cruzi. Recently, we reported a bioactive 1,2,3-triazole (compound 35) active in vitro (IC50 42.8 µM) and in vivo (100 mg/kg) against T. cruzi Y strains and preliminary in silico studies suggested the cysteine protease cruzain as a possible target. Considering these initial findings, we describe here the design and synthesis of new 1,2,3-triazoles derivatives of our hit compound (35). The triazoles were initially evaluated against healthy cells derived from neonatal rat cardiomyoblasts (H9c2 cells) to determine their cytotoxicity and against epimastigotes forms of T. cruzi Y strain. The most active triazoles were compounds 26 (IC50 19.7 µM) and 27 (IC50 7.3 µM), while benznidazole was active at 21.6 µM. Derivative 27 showed an interesting selectivity index considering healthy H9c2 cells (>77). Promising activities against trypomastigotes forms of the parasite were also observed for triazoles 26 (IC50 20.74 µM) and 27 (IC50 8.41 µM), mainly 27 which showed activity once again higher than that observed for benznidazole (IC50 12.72 µM). While docking results suggested cruzain as a potential target for these compounds, no significant enzyme inhibition was observed in vitro, indicating that their trypanocidal activity is related to another mode of action. Considering the promising in vitro results of triazoles 26 and 27, the in vivo toxicity was initially verified based on the evaluation of behavioral and physiological parameters, mortality, effect in body weight gain, and through the measurement of AST/ALT enzymes, which are markers of liver toxicity. All these evaluations pointed to a good tolerability of the animals, especially considering triazole 27. A reduction in parasitemia was observed among animals treated with triazole 27, but not among those treated with derivative 26. Regarding the dosage, derivative 27 (100 mg/kg) was the most active sample against T. cruzi infection, showing a 99.4% reduction in parasitemia peak. Triazole 27 at a dosage of 100 mg/kg influenced the humoral immune response and reduced myocarditis in the animals, bringing antibody levels closer to those observed among healthy mice. Altogether, our results indicate compound 27 as a new lead for the development of drug candidates to treat Chagas disease.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Mice , Rats , Animals , Eugenol/pharmacology , Triazoles/pharmacology , Triazoles/therapeutic use , Parasitemia/drug therapy , Trypanocidal Agents/toxicity , Chagas Disease/drug therapy
3.
Molecules ; 28(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985517

ABSTRACT

The ethnomedicinal plant Curatella americana L. (Dilleniaceae) is a common shrub in the Brazilian Cerrado, whose ethanolic extract showed significant in vitro anti-Zika virus activity by the MTT colorimetric method. Currently, there is no drug in clinical use specifically for the treatment of this virus; therefore, in this work, the antiviral and cytotoxic properties of the ethanolic extract, fractions, and compounds were evaluated. The ethanolic extract of the leaves showed no cytotoxicity for the human MRC-5 cell and was moderately cytotoxic for the Vero cell (CC50 161.5 ± 2.01 µg/mL). This extract inhibited the Zika virus multiplication cycle with an EC50 of 85.2 ± 1.65 µg/mL. This extract was fractionated using the liquid-liquid partition technique, and the ethyl acetate fraction showed significant activity against the Zika virus with an EC50 of 40.7 ± 2.33 µg/mL. From the ethyl acetate fraction, the flavonoids quercetin-3-O-hexosylgallate (1), quercetin-3-O-glucoside (2), and quercetin (5) were isolated, and in addition to these compounds, a mixture of quercetin-3-O-rhamnoside (3) and quercetin-3-O-arabinoside (4) was also obtained. The isolated compounds quercetin and quercetin-3-O-hexosylgallate inhibited the viral cytopathic effect at an EC50 of 18.6 ± 2.8 and 152.8 ± 2.0, respectively. Additionally, analyses by liquid chromatography coupled to a mass spectrometer allowed the identification of another 24 minor phenolic constituents present in the ethanolic extract and in the ethyl acetate fraction of this species.


Subject(s)
Dilleniaceae , Zika Virus Infection , Zika Virus , Humans , Flavonoids/chemistry , Quercetin , Ethanol/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Zika Virus Infection/drug therapy
4.
Nat Prod Res ; 37(14): 2415-2420, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35142584

ABSTRACT

The ethanolic extract from leaves of Rauia resinosa, Rutaceae, provided a new flavone, 5-hydroxy-5',6,7-trimethoxy-3',4'-methylenedioxyflavone (1), in addition to four known compounds: 3',4',5,5',7-pentamethoxyflavone (2), 5,7,8-trimethoxy-3'4'-methylenedioxyflavone (3), 3',4',5,7,8-pentamethoxyflavone (4) and ß-sitosterol (5). The structures of all compounds were established on the basis of spectroscopic methods, mainly 1D and 2D NMR, UPLC-DAD-MS and UPLC-ESI-MS/MS, involving comparison with literature data. Cytotoxicity of leaves and stems extracts, their fractions and compounds (2), (3), (4) and (5) were evaluated against T24 (bladder carcinoma), TOV-21-G (ovarian adenocarcinoma) and HepG2 (liver carcinoma) cell lines.


Subject(s)
Carcinoma , Flavones , Rutaceae , Humans , Tandem Mass Spectrometry , Flavones/pharmacology , Flavones/analysis , Rutaceae/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry
5.
Molecules ; 27(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36144777

ABSTRACT

Plant extracts are complex mixtures that are difficult to characterize, and mass spectrometry is one of the main techniques currently used in dereplication processes. Fridericia chica is a species with medicinal uses in Latin American countries, used in the treatment of inflammatory and infectious diseases. Extracts of this plant species are characterized by the presence of anthocyanidins. In this study, using high-resolution mass spectrometry coupled with liquid chromatography, it was possible to determine the molecular formula of thirty-nine flavonoids. Fragmentation analysis, ultraviolet spectrum and nuclear magnetic resonance data allowed the partial characterization of the structures of these compounds. The spectral dataset allowed the identification of a series of flavones in addition to the desoxyanthocyanidins common in extracts of the species. The occurrence of some of the proposed structures is uncommon in extracts of species of the Bignoniaceae family, and they are reported for the first time in the extract of this species. Quantitative analyses of total flavonoids confirmed the high content of these constituents in the species, with 4.09 ± 0.34 mg/g of dry plant material. The extract under study showed low in vitro cytotoxicity with CC50 ≥ 296.7 ± 1.4 µg/mL for Vero, LLC-MK2 and MRC-5 cell lines. In antiviral activity assays, inhibition of the cytopathic effects of Dengue, Zika and Mayaro viruses was observed, with EC50 values ranging between 30.1 and 40.9 µg/mL. The best result was observed against the Mayaro virus, with an EC50 of 30.1 µg/mL.


Subject(s)
Bignoniaceae , Flavones , Zika Virus Infection , Zika Virus , Anthocyanins/analysis , Antiviral Agents/analysis , Antiviral Agents/pharmacology , Bignoniaceae/chemistry , Flavones/analysis , Flavones/pharmacology , Flavonoids/analysis , Flavonoids/pharmacology , Mass Spectrometry , Plant Extracts/chemistry , Plant Leaves/chemistry
6.
Braz. J. Pharm. Sci. (Online) ; 58: e181096, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420472

ABSTRACT

Abstract A phytochemical study of Tecoma genus (Bignoniaceae) was accomplished by antitumor activity of ethanolic extracts. Species of this genus are composed of small shrubs often used as ornamental plants. The Tecoma stans species is used in folk medicine for different purposes. Recent work shows in vitro anticancer activity against human breast cancer. The ethanolic extracts from leaves and trunks of Tecoma casneifolia, T. garrocha, T. stans var. angustata and T. stans var. stans were tested in vitro. The assays used were against line tumor cells by the MTT method and the most active extracts were further studied. In this way, the ethanolic extract from T. stans var. stans trunks presented the higher cytotoxicity against the tumor cell lines studied (CC50 0.02 to 0.55 µg/ml) when compared to the other extracts tested (CC50 0.08 to 200.0 µg/ml). Accordingly, this extract was selected for chromatographic fractionation from which five known lignans were isolated. Further, paulownin, paulownin acetate, sesamin, olivil and cycloolivil were identified using 13C and 1H NMR, IR, UV and spectroscopy and spectrometric MS techniques. These isolated compounds were tested and exhibited CC50 ranging from 13.01 to100.0 µg/ml which is superior to the ethanolic extract of trunk of T. stans


Subject(s)
Plant Extracts/analysis , Lignans/adverse effects , Bignoniaceae , In Vitro Techniques/methods , Breast Neoplasms/pathology , Proton Magnetic Resonance Spectroscopy/methods , Acetates/pharmacology
7.
Braz. J. Pharm. Sci. (Online) ; 58: e18802, 2022. tab, graf
Article in English | LILACS | ID: biblio-1403736

ABSTRACT

Abstract The flavonoids and xanthones present in the ethanol extracts of leaves and stems of Fridericia samydoides showed that anti-dengue activities in vitro were investigated qualitatively by liquid chromatography-ultraviolet-mass spectrometry in series. Nineteen flavones and fifteen xanthones were detected and characterized on the basis of their fragmentation pattern in the positive and negative ion mode tandem mass spectrometry spectra and ultraviolet bands. Acacetin, chrysin, vitexin, isovitexin, orientin, isoorientin, mangiferin, 2'-O-trans-caffeoylmangiferin, 2'-O-trans-coumaroylmangiferin and 2'-O-trans-cinnamoylmangiferin were identified by comparison with authentic samples. The other compounds detected were tentatively assigned by analysis of the spectral data and by comparison with literature reports. In addition, it performed the fractionation of the leaves extract leading to the isolation of mangiferin, isovitexin and isoorientin. All extracts and isolated compounds inhibited the Dengue virus replication cycle with EC50 less than 25.0 µg/mL for extracts and 272.5, 85.6 and 79.3 µg/mL for mangiferin, isovitexin and isoorientin, respectively.


Subject(s)
Flavonoids/agonists , Bignoniaceae/adverse effects , Dengue Virus , Xanthones/agonists , Mass Spectrometry/methods , In Vitro Techniques/instrumentation , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods
8.
Chem Biol Drug Des ; 98(5): 903-913, 2021 11.
Article in English | MEDLINE | ID: mdl-34480517

ABSTRACT

This work describes the synthesis, anti-Candida, and molecular modeling studies of eighteen new glucosyl-1,2,3-triazoles derived from eugenol and correlated phenols. The new compounds were characterized by combined Fourier Transform Infrared, 1 H and 13 C nuclear magnetic resonance and spectroscopy of high-resolution mass spectrometry. The synthesized compounds did not show significant cytotoxicity against healthy fibroblast human cells (MCR-5) providing interesting selectivity indexes (SI) to active compounds. Considering the antifungal activity, nine compounds showed anti-Candida potential and the peracetylated triazoles 17 and 18 were the most promising ones. Eugenol derivative 17 was active against three species of Candida at 26.1-52.1 µM. This compound was four times more potent than fluconazole against Candida krusei and less toxic (SI > 6.6) against the MCR-5 cells than fluconazole (SI > 3.3) considering this strain. Dihydroeugenol derivative 18 showed similar activity to 17 and was four times more potent and less toxic than fluconazole against C. krusei. The deacetylated glucosides and non-glucosylated corresponding derivatives did not show considerable antifungal action, suggesting that the acetyl groups are essential for their anti-Candida activity. Molecular docking coupled with molecular dynamics showed that 14α-lanosterol demethylase is a feasible molecular target, since 17 and 18 could bind to this enzyme once deacetylated in vivo, thereby acting as prodrugs. Also, these studies demonstrated the importance of hydrophobic substituents at the phenyl ring.


Subject(s)
Antifungal Agents/chemical synthesis , Eugenol/chemistry , Triazoles/chemical synthesis , Antifungal Agents/pharmacology , Apoptosis/drug effects , Candida/drug effects , Cell Survival/drug effects , Drug Evaluation, Preclinical , Fibroblasts/cytology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Structure-Activity Relationship , Triazoles/pharmacology
9.
Nat Prod Res ; 35(24): 5918-5923, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32762451

ABSTRACT

Ethanolic (EB) extract and hexanic (SH) and hydromethanolic (SEM) sub-extracts of Humulus lupulus leaves were submitted to cytotoxicity evaluation and to phytochemical methods. The effect of EB and SEM on cellular cycle was evaluated by propidium iodide method and the phases were quantified through flow cytometry. The cytotoxicity assessment was done using T24 and MRC5 cells, with EB and SEM (25-1200 µg/mL). By means of UPLC-DAD-MS/MS data were identified the flavonoids astragaline, nicotiflorin, kaempferol-7-O-rutinoside, robinin, hyperin, rutin, quercetin-7-O-rutinoside and manghaslin. EB (800 µg/mL) and SEM (1200 µg/mL) reduces the T24 cell viability. These extracts at 25 µg/mL stimulate the growth of MRC5 cells, evidencing a selective cytotoxicity. After 24 h of the treatment with extracts was not observed cycle arrest of T24 cells. The bioactivity prediction of the flavonoids was evaluated in silico through in house Active-IT software and PASSonline which indicated potential activity as antitumoral, cytotoxic, anti-inflammatory, antiparasitic, antimicrobial, antiviral and others.


Subject(s)
Humulus , Brazil , Chromatography, High Pressure Liquid , Flavonoids/analysis , Glycosides , Plant Extracts/pharmacology , Plant Leaves/chemistry , Tandem Mass Spectrometry
10.
Braz. J. Pharm. Sci. (Online) ; 57: e181083, 2021. tab
Article in English | LILACS | ID: biblio-1350228

ABSTRACT

Among the methods described for determining the solubility, shake-flask is suitable to evaluate the equilibrium solubility according to the BCS. Nevertheless, experimental conditions related to the shake-flask method are not well described. Evaluating the effects of experimental conditions on solubility measurements by shake-flask method is important and contributes in biowaiver decision. For this work, propranolol hydrochloride and nimesulide were used as model compound of high and low solubility, respectively. Equilibrium solubility was evaluated at 37 ºC, 100 rpm during 48 hours in buffer media. Effects of the rotation speed, temperature, substance in excess and aliquot withdrawn were evaluated. Small variations of temperature caused significant differences in the solubility and then this parameter must be controlled. Excess of raw material influenced the results of the nimesulide, then, little excess is recommended. Rotation speed did not cause differences in the equilibrium solubilities, but at 150 rpm the equilibrium was reached faster. Aliquot did not present significant differences, but excessive withdrawn should be avoided. Therefore, the evaluation of equilibrium solubility using shake-flask method must be performed in physiological pH conditions, 37 ± 1 ºC, substance in excess 10% above saturation, 50, 100 or 150 rpm and aliquot withdrawn not more than 10% of the media volume.


Subject(s)
Solubility , Batch Cell Culture Techniques/methods , Pharmaceutical Preparations/administration & dosage
11.
BMC Complement Med Ther ; 20(1): 246, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32767975

ABSTRACT

BACKGROUND: Plant species from the genus Tecoma are found in tropical and subtropical regions around the world. Some of them are grown as ornamental plants and others can be used as medicinal plants. In the present study, ethanolic extracts from trunks and leaves of Tecoma species were tested in vitro using assays against the Zika virus. METHODS: There was a total of 8 extracts obtained from different anatomical parts of three Tecoma species. The Tecoma castaneifolia, T. garrocha, T. stans var. angustata and T. stans var. stans were prepared by percolation with ethanol. The antiviral activity was assayed in vitro against the Zika virus by the MTT colorimetric method (n = 3). The UPLC-DAD-MS analysis of ethanolic extracts was performed from all the studied species. The biofractionation of T. stans var. stans trunk extract using different separation techniques led to the isolation of crenatoside compound. RESULTS: Ethanolic extract from Tecoma species leaves were more active against the Zika virus (EC50 149.90 to 61.25 µg/mL) when compared to the trunk extracts tested (EC50 131.0 to 66.79 µg/mL and two were not active). The ethyl acetate and aqueous fractions obtained from T. stans var. stans trunk were active against the Zika virus with EC50 values of 149.90 and 78.98 µg/mL, respectively. Crenatoside is a phenylethanoid glycoside isolated from the ethyl acetate of T. stans var. stans trunk extract. This compound was tested and exhibited EC50 34.78 µM (21.64 µg/mL), thus demonstrating a better result than the original ethanolic extracts as well as others extracts of Tecoma species, and it was more active than the positive control, ribavirin (386.84 µM). Furthermore, its selectivity index was at least 2.5 times higher than the tested ethanolic extracts and 11.1 times more potent than ribavirin. CONCLUSION: The Tecoma species demonstrated interesting in vitro activity against the Zika virus. The crenatoside, phenylethanoid glycoside that was for the first time isolated from Tecoma stans var. stans, exhibited a potent and relevant anti-Zika virus activity, being more active than ribavirin (positive control). The data show that crenatoside, was a promising compound with in vitro antiviral activity against the Zika virus.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bignoniaceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Zika Virus/drug effects , Animals , Brazil , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Mass Spectrometry , Plant Leaves , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...