Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Semin Cell Dev Biol ; 141: 14-22, 2023 05 30.
Article in English | MEDLINE | ID: mdl-35871155

ABSTRACT

Molecular mechanisms surrounding early human embryonic events such as blastocyst formation, implantation, and the specification of the body axes are some of the most attractive research questions of developmental biology today. A knowledge on the detailed signaling landscape underlying these critical events in the human could impact the way we treat early pregnancy disorders and infertility, and considerably advance our abilities to make precise human tissues in a lab. However, owing to ethical, technical, and policy restrictions, research on early human embryo development historically stalled behind animal models. The rapid progress in 3D culture of human embryonic stem cells over the past years created an opportunity to overcome this critical challenge. We review recently developed strategies of making 3D models of the human embryo built from embryonic stem cells, which we refer to as embryoids. We focus on models aimed at reconstituting the 3D epithelial characteristics of the early human embryo, namely the intra/extraembryonic signaling crosstalk, tissue polarity, and embryonic cavities. We identify distinct classes of embryoids based on whether they explicitly include extraembryonic tissues and we argue for the merit of compromising on certain aspects of embryo mimicry in balancing the experimental feasibility with ethical considerations. Human embryoids open gates toward a new field of synthetic human embryology, allowing to study the long inaccessible stages of early human development at unprecedented detail.


Subject(s)
Embryo Implantation , Embryonic Development , Pregnancy , Animals , Female , Humans , Embryo, Mammalian , Embryonic Stem Cells
2.
PLoS One ; 16(10): e0259068, 2021.
Article in English | MEDLINE | ID: mdl-34710136

ABSTRACT

Wilms tumor-1-interacting protein (Wtip) is a LIM-domain-containing adaptor that links cell junctions with actomyosin complexes and modulates actomyosin contractility and ciliogenesis in Xenopus embryos. The Wtip C-terminus with three LIM domains associates with the actin-binding protein Shroom3 and modulates Shroom3-induced apical constriction in ectoderm cells. By contrast, the N-terminal domain localizes to apical junctions in the ectoderm and basal bodies in skin multiciliated cells, but its interacting partners remain largely unknown. Targeted proximity biotinylation (TPB) using anti-GFP antibody fused to the biotin ligase BirA identified SSX2IP as a candidate protein that binds GFP-WtipN. SSX2IP, also known as Msd1 or ADIP, is a component of cell junctions, centriolar satellite protein and a targeting factor for ciliary membrane proteins. WtipN physically associated with SSX2IP and the two proteins readily formed mixed aggregates in overexpressing cells. By contrast, we observed only partial colocalization of full length Wtip and SSX2IP, suggesting that Wtip adopts a 'closed' conformation in the cell. Furthermore, the double depletion of Wtip and SSX2IP in early embryos uncovered the functional interaction of the two proteins during neural tube closure. Our results suggest that the association of SSX2IP and Wtip is essential for cell junction remodeling and morphogenetic processes that accompany neurulation. We propose that TPB can be a general approach that is applicable to other GFP-tagged proteins.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Transcription Factors/metabolism , Xenopus Proteins/metabolism , Animals , Biotinylation , Mass Spectrometry , Protein Binding , Xenopus laevis
3.
Sci Rep ; 11(1): 13433, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183732

ABSTRACT

The Wnt pathway activates target genes by controlling the ß-catenin-T-cell factor (TCF) transcriptional complex during embryonic development and cancer. This pathway can be potentiated by R-spondins, a family of proteins that bind RNF43/ZNRF3 E3 ubiquitin ligases and LGR4/5 receptors to prevent Frizzled degradation. Here we demonstrate that, during Xenopus anteroposterior axis specification, Rspo2 functions as a Wnt antagonist, both morphologically and at the level of gene targets and pathway mediators. Unexpectedly, the binding to RNF43/ZNRF3 and LGR4/5 was not required for the Wnt inhibitory activity. Moreover, Rspo2 did not influence Dishevelled phosphorylation in response to Wnt ligands, suggesting that Frizzled activity is not affected. Further analysis indicated that the Wnt antagonism is due to the inhibitory effect of Rspo2 on TCF3/TCF7L1 phosphorylation that normally leads to target gene activation. Consistent with this mechanism, Rspo2 anteriorizing activity has been rescued in TCF3-depleted embryos. These observations suggest that Rspo2 is a context-specific regulator of TCF3 phosphorylation and Wnt signaling.


Subject(s)
Body Patterning/drug effects , Intercellular Signaling Peptides and Proteins/physiology , Transcription Factor 3/antagonists & inhibitors , Wnt Signaling Pathway/drug effects , Xenopus Proteins/antagonists & inhibitors , Xenopus Proteins/physiology , Animals , Body Patterning/physiology , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Genes, Reporter , Head/embryology , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Transcription Factor 3/metabolism , Xenopus Proteins/biosynthesis , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus Proteins/pharmacology , Xenopus laevis/embryology
4.
Int J Dev Biol ; 65(4-5-6): 227-233, 2021.
Article in English | MEDLINE | ID: mdl-32930371

ABSTRACT

This review highlights the work that my research group has been developing, together with international collaborators, during the last decade. Since we were able to establish the Xenopus laevis experimental model in Brazil, we have been focused on understanding early embryonic patterns regarding neural induction and axes establishment. In this context, the Wnt pathway appears as a major player and has been much explored by us and other research groups. Here, we chose to review three published works which we consider to be landmarks within the course of our research and also within the history of modern findings regarding neural induction and patterning. We intend to show how our series of discoveries, when painted together, tells a story that covers crucial developmental windows of early differentiation paths of anterior neural tissue: 1. establishing the head organizer in contrast to the trunk organizer in the early gastrula; 2. deciding between neural ectoderm and epidermis ectoderm at the blastula/gastrula stages, and 3. the gathering of prechordal unique properties in the late gastrula/early neurula.


Subject(s)
Body Patterning , Wnt Signaling Pathway , Animals , Ectoderm/metabolism , Embryonic Induction , Gastrula/metabolism , Gene Expression Regulation, Developmental , Xenopus Proteins/genetics , Xenopus laevis/metabolism
5.
PLoS Genet ; 16(5): e1008255, 2020 05.
Article in English | MEDLINE | ID: mdl-32392211

ABSTRACT

mTOR, a serine/threonine protein kinase that is involved in a series of critical cellular processes, can be found in two functionally distinct complexes, mTORC1 and mTORC2. In contrast to mTORC1, little is known about the mechanisms that regulate mTORC2. Here we show that mTORC2 activity is reduced in mice with a hypomorphic mutation of the Ric-8B gene. Ric-8B is a highly conserved protein that acts as a non-canonical guanine nucleotide exchange factor (GEF) for heterotrimeric Gαs/olf type subunits. We found that Ric-8B hypomorph embryos are smaller than their wild type littermates, fail to close the neural tube in the cephalic region and die during mid-embryogenesis. Comparative transcriptome analysis revealed that signaling pathways involving GPCRs and G proteins are dysregulated in the Ric-8B mutant embryos. Interestingly, this analysis also revealed an unexpected impairment of the mTOR signaling pathway. Phosphorylation of Akt at Ser473 is downregulated in the Ric-8B mutant embryos, indicating a decreased activity of mTORC2. Knockdown of the endogenous Ric-8B gene in cultured cell lines leads to reduced phosphorylation levels of Akt (Ser473), further supporting the involvement of Ric-8B in mTORC2 activity. Our results reveal a crucial role for Ric-8B in development and provide novel insights into the signals that regulate mTORC2.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Animals , Cells, Cultured , Down-Regulation/genetics , Embryo, Mammalian , Embryonic Development/genetics , Female , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Developmental , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics
6.
Development ; 147(10)2020 05 27.
Article in English | MEDLINE | ID: mdl-32366679

ABSTRACT

R-spondins are a family of secreted proteins that play important roles in embryonic development and cancer. R-spondins have been shown to modulate the Wnt pathway; however, their involvement in other developmental signaling processes have remained largely unstudied. Here, we describe a novel function of Rspo2 in FGF pathway regulation in vivo Overexpressed Rspo2 inhibited elongation of Xenopus ectoderm explants and Erk1 activation in response to FGF. By contrast, the constitutively active form of Mek1 stimulated Erk1 even in the presence of Rspo2, suggesting that Rspo2 functions upstream of Mek1. The observed inhibition of FGF signaling was accompanied by the downregulation of the FGF target genes tbxt/brachyury and cdx4, which mediate anterioposterior axis specification. Importantly, these target genes were upregulated in Rspo2-depleted explants. The FGF inhibitory activity was mapped to the thrombospondin type 1 region, contrasting the known function of the Furin-like domains in Wnt signaling. Further domain analysis revealed an unexpected intramolecular interaction that might control Rspo2 signaling output. We conclude that, in addition to its role in Wnt signaling, Rspo2 acts as an FGF antagonist during mesoderm formation and patterning.


Subject(s)
Body Patterning/genetics , Fibroblast Growth Factor 2/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Xenopus laevis/metabolism , Animals , Down-Regulation/genetics , Ectoderm/embryology , Ectoderm/metabolism , Fibroblast Growth Factor 2/pharmacology , Gastrulation/genetics , Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins , Mutagenesis, Site-Directed/methods , Protein Domains , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/genetics , Wnt Signaling Pathway/genetics , Xenopus Proteins/genetics , Xenopus laevis/genetics
7.
Cancers (Basel) ; 11(12)2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31817828

ABSTRACT

The deregulation of the Wnt/ß-catenin signaling pathway is a central event in colorectal cancer progression, thus a promising target for drug development. Many natural compounds, such as flavonoids, have been described as Wnt/ß-catenin inhibitors and consequently modulate important biological processes like inflammation, redox balance, cancer promotion and progress, as well as cancer cell death. In this context, we identified the chalcone lonchocarpin isolated from Lonchocarpus sericeus as a Wnt/ß-catenin pathway inhibitor, both in vitro and in vivo. Lonchocarpin impairs ß-catenin nuclear localization and also inhibits the constitutively active form of TCF4, dnTCF4-VP16. Xenopus laevis embryology assays suggest that lonchocarpin acts at the transcriptional level. Additionally, we described lonchocarpin inhibitory effects on cell migration and cell proliferation on HCT116, SW480, and DLD-1 colorectal cancer cell lines, without any detectable effects on the non-tumoral intestinal cell line IEC-6. Moreover, lonchocarpin reduces tumor proliferation on the colorectal cancer AOM/DSS mice model. Taken together, our results support lonchocarpin as a novel Wnt/ß-catenin inhibitor compound that impairs colorectal cancer cell growth in vitro and in vivo.

8.
PLoS One ; 14(5): e0216083, 2019.
Article in English | MEDLINE | ID: mdl-31048885

ABSTRACT

The use of Xenopus laevis as a model for vertebrate developmental biology is limited by a lack of antibodies specific for embryonic antigens. This study evaluated the use of immune and non-immune phage display libraries for the isolation of single domain antibodies, or nanobodies, with specificities for Xenopus embryonic antigens. The immune nanobody library was derived from peripheral blood lymphocyte RNA obtained from a llama immunized with Xenopus gastrula homogenates. Screening this library by immunostaining of embryonic tissues with pooled periplasmic material and sib-selection led to the isolation of several monoclonal phages reactive with the cytoplasm and nuclei of gastrula cells. One antigen recognized by a group of nanobodies was identified using a reverse proteomics approach as nucleoplasmin, an abundant histone chaperone. As an alternative strategy, a semi-synthetic non-immune llama nanobody phage display library was panned on highly purified Xenopus proteins. This proof-of-principle approach isolated monoclonal nanobodies that specifically bind Nuclear distribution element-like 1 (Ndel1) in multiple immunoassays. Our results suggest that immune and non-immune phage display screens on crude and purified embryonic antigens can efficiently identify nanobodies useful to the Xenopus developmental biology community.


Subject(s)
Embryonic Development/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/isolation & purification , Amino Acid Sequence , Animals , Antibodies/isolation & purification , Antibodies/metabolism , Antigens/immunology , Cell Surface Display Techniques/methods , Cytoskeletal Proteins/immunology , Gastrula , Peptide Library , Stage-Specific Embryonic Antigens/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/immunology , Xenopus laevis/embryology , Xenopus laevis/immunology , Xenopus laevis/metabolism
9.
Mech Dev ; 142: 30-39, 2016 11.
Article in English | MEDLINE | ID: mdl-27687541

ABSTRACT

Wnt/ß-catenin has been described as crucial for dorsal-ventral and antero-posterior patterning, playing multiple roles at different stages of development. Cholesterol-rich membrane microdomains (CRMMs), cholesterol- and sphingolipid-enriched domains of the plasma membrane, are known as platforms for signaling pathways. Although we have demonstrated the importance of the CRMMs for head development, how they participate in prechordal plate formation and embryo axis patterning remains an open question. Moreover, the participation of the CRMMs in the Wnt/ß-catenin signaling pathway activity in vivo is unclear, particularly during embryonic development. In this study, we demonstrated that CRMMs disruption by methyl-beta-cyclodextrin (MßCD) potentiates the activation of the Wnt/ß-catenin signaling pathway in vitro and in vivo during embryonic development, causing head defects by expanding the Wnt expression domain. Furthermore, we also found that the action of CRMMs depends on the microenvironmental context because it also works in conjunction with dkk1, when dkk1 is overexpressed. Thus, we propose CRMMs as a further mechanism of prechordal plate protection against the Wnt signals secreted by posterolateral cells, complementing the action of secreted antagonists.


Subject(s)
Body Patterning/genetics , Membrane Microdomains/genetics , Wnt Proteins/genetics , beta Catenin/genetics , Animals , Cholesterol/metabolism , Gene Expression Regulation, Developmental/drug effects , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway/drug effects , Xenopus laevis/genetics , Xenopus laevis/growth & development , beta Catenin/metabolism , beta-Cyclodextrins/pharmacology
10.
Genesis ; 54(5): 257-71, 2016 05.
Article in English | MEDLINE | ID: mdl-26953634

ABSTRACT

Direct development in amphibians is characterized by the loss of aquatic breeding. The anuran Adelophryne maranguapensis is one example of a species with direct development, and it is endemic to the state of Ceará, Brazil. Detailed morphological features of A. maranguapensis embryos and the stages of sequential development have not been described before. Here, we analyzed all available genetic sequence tags in A. maranguapensis (tyr exon 1, pomc and rag1) and compared them with sequences from other species of Adelophryne frogs. We describe the A. maranguapensis reproductive tract and embryonic body development, with a focus on the limbs, tail, ciliated cells of the skin, and the egg tooth, which were analyzed using scanning electron microscopy. Histological analyses revealed ovaries containing oocytes surrounded by follicular cells, displaying large nuclei with nucleoli inside. Early in development, the body is unpigmented, and the neural tube forms dorsally to the yolk vesicle, typical of a direct-developing frog embryo. The hindlimbs develop earlier than the forelimbs. Ciliated cells are abundant during the early stages of skin development and are less common during later stages. The egg tooth appears in the later stages and develops as a keratinized microridge structure. The developmental profile of A. maranguapensis presented here will contribute to our understanding of the direct-development model and may help preserve this endangered native Brazilian frog. genesis 54:257-271, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Anura/growth & development , Embryonic Development , Extremities/growth & development , Skin/growth & development , Animals , Anura/genetics , Embryo, Nonmammalian , Oocytes/growth & development , Oocytes/metabolism , Skin/metabolism
11.
PLoS One ; 10(8): e0133689, 2015.
Article in English | MEDLINE | ID: mdl-26241738

ABSTRACT

Connective-tissue growth factor (CTGF) is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61), CTGF and nephroblastoma overexpressed (NOV). CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFß, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling. Additionally, CTGF-induced differentiation of glioblastoma stem cells into a less-tumorigenic state could increase the chances of successful intervention, since differentiated cells are more vulnerable to cancer treatments.


Subject(s)
Astrocytes/drug effects , Connective Tissue Growth Factor/pharmacology , Fibronectins/biosynthesis , Animals , Cell Differentiation/drug effects , Cell Division/drug effects , Cell Line, Tumor , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Fibronectins/genetics , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Glioblastoma/pathology , Humans , MAP Kinase Signaling System/drug effects , Mice , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Nestin/analysis , Nestin/biosynthesis , Nestin/genetics , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Recombinant Proteins/pharmacology , SOXB1 Transcription Factors/analysis , Xenopus Proteins/pharmacology
12.
PLoS One ; 10(3): e0120919, 2015.
Article in English | MEDLINE | ID: mdl-25775405

ABSTRACT

Overactivation of the Wnt/ß-catenin pathway in adult tissues has been implicated in many diseases, such as colorectal cancer. Finding chemical substances that can prevent this phenomenon is an emerging problem. Recently, several natural compounds have been described as Wnt/ß-catenin inhibitors and might be promising agents for the control of carcinogenesis. Here, we describe two natural substances, derricin and derricidin, belonging to the chalcone subclass, that show potent transcriptional inhibition of the Wnt/ß-catenin pathway. Both chalcones are able to affect the cell distribution of ß-catenin, and inhibit Wnt-specific reporter activity in HCT116 cells and in Xenopus embryos. Derricin and derricidin also strongly inhibited canonical Wnt activity in vitro, and rescued the Wnt-induced double axis phenotype in Xenopus embryos. As a consequence of Wnt/ß-catenin inhibition, derricin and derricidin treatments reduce cell viability and lead to cell cycle arrest in colorectal cancer cell lines. Taken together, our results strongly support these chalcones as novel negative modulators of the Wnt/ß-catenin pathway and colon cancer cell growth in vitro.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Colonic Neoplasms/metabolism , Flavonoids/pharmacology , Hemiterpenes/pharmacology , Wnt Signaling Pathway , Animals , Cell Proliferation/drug effects , Chalcones/chemistry , HCT116 Cells , Hemiterpenes/chemistry , Humans , Xenopus , beta Catenin/genetics , beta Catenin/metabolism
13.
Dev Cell ; 32(6): 719-30, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25771893

ABSTRACT

Secreted Wnt morphogens are essential for embryogenesis and homeostasis and require a lipid/palmitoleoylate modification for receptor binding and activity. Notum is a secreted Wnt antagonist that belongs to the α/ß hydrolase superfamily, but its mechanism of action and roles in vertebrate embryogenesis are not fully understood. Here, we report that Notum hydrolyzes the Wnt palmitoleoylate adduct extracellularly, resulting in inactivated Wnt proteins that form oxidized oligomers incapable of receptor binding. Thus, Notum is a Wnt deacylase, and palmitoleoylation is obligatory for the Wnt structure that maintains its active monomeric conformation. Notum is expressed in naive ectoderm and neural plate in Xenopus and is required for neural and head induction. These findings suggest that Notum is a prerequisite for the "default" neural fate and that distinct mechanisms of Wnt inactivation by the Tiki protease in the Organizer and the Notum deacylase in presumptive neuroectoderm orchestrate vertebrate brain development.


Subject(s)
Esterases/genetics , Head/embryology , Neurogenesis/physiology , Wnt Proteins/metabolism , Xenopus Proteins/metabolism , Animals , Body Patterning/genetics , Ectoderm/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Gene Silencing , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Morpholinos , Neural Plate/metabolism , Oxidation-Reduction , Palmitic Acid/chemistry , Protein Binding , Protein Conformation , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/chemistry , Xenopus Proteins/genetics , Xenopus laevis
14.
J Biol Chem ; 289(51): 35456-67, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25359775

ABSTRACT

Flavonoids are plant-derived polyphenolic molecules that have potential biological effects including anti-oxidative, anti-inflammatory, anti-viral, and anti-tumoral effects. These effects are related to the ability of flavonoids to modulate signaling pathways, such as the canonical Wnt signaling pathway. This pathway controls many aspects of embryonic development and tissue maintenance and has been found to be deregulated in a range of human cancers. We performed several in vivo assays in Xenopus embryos, a functional model of canonical Wnt signaling studies, and also used in vitro models, to investigate whether isoquercitrin affects Wnt/ß-catenin signaling. Our data provide strong support for an inhibitory effect of isoquercitrin on Wnt/ß-catenin, where the flavonoid acts downstream of ß-catenin translocation to the nuclei. Isoquercitrin affects Xenopus axis establishment, reverses double axes and the LiCl hyperdorsalization phenotype, and reduces Xnr3 expression. In addition, this flavonoid shows anti-tumoral effects on colon cancer cells (SW480, DLD-1, and HCT116), whereas exerting no significant effect on non-tumor colon cell (IEC-18), suggesting a specific effect in tumor cells in vitro. Taken together, our data indicate that isoquercitrin is an inhibitor of Wnt/ß-catenin and should be further investigated as a potential novel anti-tumoral agent.


Subject(s)
Cell Proliferation/drug effects , Quercetin/analogs & derivatives , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Active Transport, Cell Nucleus/drug effects , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Body Patterning/drug effects , Body Patterning/genetics , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Early Growth Response Protein 2/genetics , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , HCT116 Cells , Humans , Immunohistochemistry , In Situ Hybridization , Lithium Chloride/pharmacology , Quercetin/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Wnt Signaling Pathway/genetics , Xenopus/embryology , Xenopus/genetics , Xenopus/metabolism , Xenopus Proteins/genetics , beta Catenin/genetics
15.
Int J Dev Biol ; 58(5): 355-362, 2014.
Article in English | MEDLINE | ID: mdl-25354456

ABSTRACT

Tiki1 is a Wnt protease and antagonist specifically expressed in the Spemann-Mangold Organizer and is required for head formation in Xenopus embryos. Here we report neighbor-joining phylogenetic analysis of vertebrate Tiki genes and their mRNA expression patterns in chick, mouse, and rabbit embryos. Tiki1 and Tiki2 orthologues are highly conserved, and exhibit similar but also different developmental expression patterns among the vertebrate/mammalian species analyzed. The Tiki1 gene is noticeably absent in the rodent lineage, but is present in lagomorphs and all other vertebrate/mammalian species examined. Expression in Hensen's node, the equivalent of the Xenopus Organizer, was observed for Chick Tiki2 and Rabbit Tiki1 and Tiki2. Mouse Tiki2 was detected at low levels at gastrulation and head fold stages, but not in the node. Mouse Tiki2 and chick Tiki1 display similar expression in the dorsal spinal cord. Chick Tiki1 expression was also detected in the surface ectoderm and maxillary bud, while chick Tiki2 was found in the anterior intestinal portal, head mesenchyme and primitive atrium. Our expression analyses provide evidence that Tiki1 and Tiki2 are evolutionarily conserved among vertebrate species and their expression in the Organizer and other regions suggests contributions of these Wnt inhibitors to embryonic patterning, as well as organogenesis. Our analyses further reveal mis-regulation of TIKI1 and TIKI2 in human cancer and diseases.


Subject(s)
Body Patterning/genetics , Evolution, Molecular , Gene Expression Regulation, Developmental , Membrane Proteins/genetics , Metalloproteases/genetics , Phylogeny , Animals , Chick Embryo , Membrane Proteins/metabolism , Metalloendopeptidases , Metalloproteases/metabolism , Mice , Organizers, Embryonic/embryology , Organizers, Embryonic/metabolism , Rabbits
16.
Curr Top Med Chem ; 12(19): 2103-13, 2012.
Article in English | MEDLINE | ID: mdl-23167799

ABSTRACT

Maternal Wnt/ß-Catenin signaling is essential to establish dorsal-specific gene expression required for axial patterning in Xenopus. Deregulation of this pathway causes axis phenotypes in frog embryos. In adult life, mutations in the Wnt pathway components are associated with many diseases, such as polyposis coli; osteoporosis-pseudoglioma syndrome (OPPG); skeletal dysplasia; neural tube defects, cancer and many others. Thus, a better understanding of Wnt/ß-catenin signaling will have great and significant impact on Biology and Medicine. In this aspect, natural compounds are potential targets as novel molecules that could modulate the Wnt pathway. For instance, flavonoids are a large group of natural compounds found in plants that modulate important cellular and molecular mechanisms related to diseases, but the specific in vivo mechanism of action of most flavonoids remain unknown. In this way, Xenopus embryos may provide an efficient model, since it is frequently used to test and identify the role of molecules that affect Wnt/ß-catenin signaling. Here, we describe a combination of approaches to outline and characterize the role of two flavonoids, quercetin and rutin, on Wnt/ß-catenin signaling, using Xenopus embryos as an experimental model. Our data support that quercetin is potential in vivo modulator of canonical Wnt signaling and that this effect might depend on the structure of this molecule, as we did not observe any effect with rutin treatment, a flavonol structurally-related to quercetin. This model is useful to analyze effects of quercetin and other flavonoids in vivo and to provide further understanding of how natural compounds can modulate signaling pathways, using Xenopus embryos as a fast and efficient reading of in vivo effects of those compounds.


Subject(s)
Biological Products/pharmacology , Drug Discovery , Embryonic Development/drug effects , Signal Transduction/drug effects , Wnt Proteins/metabolism , Xenopus/embryology , beta Catenin/metabolism , Animals , Base Sequence , DNA Primers , Reverse Transcriptase Polymerase Chain Reaction
17.
Dev Biol ; 365(2): 350-62, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22426006

ABSTRACT

Cholesterol-rich membrane microdomains (CRMMs) are specialized structures that have recently gained much attention in cell biology because of their involvement in cell signaling and trafficking. However, few investigations, particularly those addressing embryonic development, have succeeded in manipulating and observing CRMMs in living cells. In this study, we performed a detailed characterization of the CRMMs lipid composition during early frog development. Our data showed that disruption of CRMMs through methyl-ß-cyclodextrin (MßCD) cholesterol depletion at the blastula stage did not affect Spemann's organizer gene expression and inductive properties, but impaired correct head development in frog and chick embryos by affecting the prechordal plate gene expression and cellular morphology. The MßCD anterior defect phenotype was recapitulated in head anlagen (HA) explant cultures. Culture of animal cap expressing Dkk1 combined with MßCD-HA generated a head containing eyes and cement gland. Together, these data show that during Xenopus blastula and gastrula stages, CRMMs have a very dynamic lipid composition and provide evidence that the secreted Wnt antagonist Dkk1 can partially rescue anterior structures in cholesterol-depleted head anlagen.


Subject(s)
Body Patterning , Cholesterol/metabolism , Membrane Microdomains/metabolism , Prosencephalon/embryology , Animals , Chick Embryo , Membrane Microdomains/drug effects , Organizers, Embryonic/metabolism , Xenopus laevis , beta-Cyclodextrins/pharmacology
18.
Cells Tissues Organs ; 187(3): 199-210, 2008.
Article in English | MEDLINE | ID: mdl-18089935

ABSTRACT

BACKGROUND/AIMS: CCN2 is present during tooth development. However, the relationship between CCN2 and the transforming growth factor beta (TGFbeta)/SMAD2/3 signaling cascade during early stages of tooth development is unclear. Here, we compare the expression of CCN2 and TGFbeta/SMAD2/3 components during tooth development, and analyze the functioning of TGFbeta/SMAD2/3 in wild-type (WT) and Ccn2 null (Ccn2-/-) mice. METHODS: Coronal sections of mice on embryonic day (E)11.5, E12.5, E13.5, E14.5 and E18.5 from WT and Ccn2-/- were immunoreacted to detect CCN2 and components of the TGFbeta signaling pathway and assayed for 5'-bromo-2'-deoxyuridine immunolabeling and proliferating cell nuclear antigen immunostaining. RESULTS: CCN2 and TGFbeta signaling components such as TGFbeta1, TGFbeta receptor II, SMADs2/3 and SMAD4 were expressed in inducer tissues during early stages of tooth development. Proliferation analysis in these areas showed that epithelial cells proliferate less than mesenchymal cells from E11.5 to E13.5, while at E14.5 they proliferate more than mesenchymal cells. We did not find a correlation between functioning of the TGFbeta1 cascade and CCN2 expression because Ccn2-/- mice showed neither a reduction in SMAD2 phosphorylation nor a difference in cell proliferation. CONCLUSION: CCN2 and the TGFbeta/SMAD2/3 signaling pathway are active in signaling centers of tooth development where proliferation is dynamic, but these mechanisms may act independently.


Subject(s)
Immediate-Early Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Odontogenesis/genetics , Signal Transduction/physiology , Smad2 Protein/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation/physiology , Cell Proliferation , Connective Tissue Growth Factor , Gene Expression , Immediate-Early Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Protein Binding , Smad2 Protein/analysis , Smad2 Protein/genetics , Smad3 Protein/analysis , Smad3 Protein/genetics , Smad3 Protein/metabolism , Smad4 Protein/analysis , Smad4 Protein/genetics , Smad4 Protein/metabolism , Transforming Growth Factor beta/analysis , Transforming Growth Factor beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...