Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chimia (Aarau) ; 73(1): 63-68, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30814001

ABSTRACT

The main cause of cancer-related death is due to cancer cell spreading and formation of secondary tumors in distant organs, the so-called metastases. Metastatic cancer cells are detectable in the blood of cancer patients as circulating tumor cells (CTC) and may be exploited for prognostic and monitoring purposes, including in breast cancer. Due to their very low frequency, however, their quantitative detection remains a challenge in clinical practice. Nature has developed mechanisms to amplify rare biological events or weak signals, such as intracellular signaling pathways, cytokine networks or the coagulation cascades. At the National Center for Competence in Research (NCCR) in Bio-Inspired Materials we are coupling gold nanoparticle-based strategies with fibrinogen and DNA bio-inspired amplification cascades to develop an in vitro test to specifically and sensitively detect CTCs in patients' blood. In this article, we describe the biological context, the concept of bio-inspired amplification, and the approaches chosen. We also discuss limitations, open questions and further potential biomedical applications of such an approach.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Neoplastic Cells, Circulating , Gold , Humans , Prognosis
2.
Colloids Surf B Biointerfaces ; 171: 579-589, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30098536

ABSTRACT

The lack of understanding of fundamental nano-bio interactions, and difficulties in designing particles stable in complex biological environments are major limitations to their translation into biomedical clinical applications. Here we present a multi-parametric approach to fully characterize targeted nanoparticles, and emphasizes the significant effect that each detail in the synthetic process can have on downstream in vitro results. Through an iterative process, particles were designed, synthesized and tested for physico-chemical and bio-interactive properties which allowed the optimization of nanoparticle functionality. Taken together all interative steps demonstrate that we have synthesized a multifunctional gold nanoparticles that can detect ERBB2-positive breast cancer cells while showing stealth-like behavior toward ERBB2-negative cells and excellent physicochemical stability.


Subject(s)
Breast Neoplasms/diagnosis , Gold/chemistry , Metal Nanoparticles/chemistry , Receptor, ErbB-2/analysis , Cell Line, Tumor , Female , Humans , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...