Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 129(12): 127601, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179158

ABSTRACT

We use an x-ray free-electron laser to study the lattice dynamics following photoexcitation with ultrafast near-UV light (wavelength 266 nm, 50 fs pulse duration) of the incipient ferroelectric potassium tantalate, KTaO_{3}. By probing the lattice dynamics corresponding to multiple Brillouin zones through the x-ray diffuse scattering with pulses from the Linac Coherent Light Source (LCLS) (wavelength 1.3 Å and <10 fs pulse duration), we observe changes in the diffuse intensity associated with a hardening of the transverse acoustic phonon branches along Γ to X and Γ to M. Using force constants from density functional theory, we fit the quasiequilibrium intensity and obtain the instantaneous lattice temperature and density of photoexcited charge carriers. The density functional theory calculations demonstrate that photoexcitation transfers charge from oxygen 2p derived π-bonding orbitals to Ta 5d derived antibonding orbitals, further suppressing the ferroelectric instability and increasing the stability of the cubic, paraelectric structure.

2.
Phys Rev Lett ; 128(15): 155301, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35499894

ABSTRACT

Using femtosecond time-resolved x-ray diffraction, we investigated optically excited coherent acoustic phonons in the Weyl semimetal TaAs. The low symmetry of the (112) surface probed in our experiment enables the simultaneous excitation of longitudinal and shear acoustic modes, whose dispersion closely matches our simulations. We observed an asymmetry in the spectral line shape of the longitudinal mode that is notably absent from the shear mode, suggesting a time-dependent frequency chirp that is likely driven by photoinduced carrier diffusion. We argue on the basis of symmetry that these acoustic deformations can transiently alter the electronic structure near the Weyl points and support this with model calculations. Our study underscores the benefit of using off-axis crystal orientations when optically exciting acoustic deformations in topological semimetals, allowing one to transiently change their crystal and electronic structures.

3.
Struct Dyn ; 9(2): 024301, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35311000

ABSTRACT

We report the observation of photo-induced plasmon-phonon coupled modes in the group IV-VI semiconductor PbTe using ultrafast x-ray diffuse scattering at the Linac Coherent Light Source. We measure the near-zone-center excited-state dispersion of the heavily screened longitudinal optical (LO) phonon branch as extracted from differential changes in x-ray diffuse scattering intensity following above bandgap photoexcitation. We suggest that upon photoexcitation, the LO phonon-plasmon coupled (LOPC) modes themselves become coupled to longitudinal acoustic modes that drive electron band shifts via acoustic deformation potentials and possibly to low-energy single-particle excitations within the plasma and that these couplings give rise to displacement-correlations that oscillate in time with a period given effectively by the heavily screened LOPC frequency.

4.
Opt Express ; 29(15): 24161-24168, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614666

ABSTRACT

Short wavelength high-harmonic sources are undergoing intense development for applications in spectroscopy and microscopy. Despite recent progress in peak and average power, spatial control over coherent extreme ultraviolet (XUV) beams remains a formidable challenge due to the lack of suitable optical elements for beam shaping and control. Here we demonstrate a robust and precise approach that structures XUV high-order harmonics in space as they are emitted from a nanostructured MgO crystal. Our demonstration paves the way for bridging the numerous applications of shaped light beams from the visible to the short wavelengths, with potential uses for applications in microscopy and nanoscale machining.

5.
Opt Express ; 26(9): 12210-12218, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716134

ABSTRACT

We experimentally demonstrate backward emission of high-harmonics of a near-infrared laser from MgO and Si crystals in the direction of specular reflection. We show that the variation of the high-harmonic power with the angle of incidence can be predicted with nonlinear reflection coefficients derived originally for perturbative nonlinearities. A comparison of transmission and reflection geometries suggests that backward-propagating high-harmonics are an excellent reference to study nonlinear propagation of intense light in solids. Backward emission will enable phase matching of the high-harmonic beam and the integration of the functionalities of extended gas-phase high-harmonic beamlines into a single optical element. The potential to achieve phase matching paves the way to solid-state based high-harmonic sources with higher flux than the best transmission-based sources, where high-harmonics are strongly absorbed by the crystal itself.

6.
Phys Rev Lett ; 120(10): 105501, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29570335

ABSTRACT

Long wavelength vibrational modes in the ferromagnetic semiconductor Ga_{0.91}Mn_{0.09}As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

7.
Struct Dyn ; 4(5): 054305, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28852687

ABSTRACT

Here, we report Fourier-transform inelastic x-ray scattering measurements of photoexcited GaAs with embedded ErAs nanoparticles. We observe temporal oscillations in the x-ray scattering intensity, which we attribute to inelastic scattering from coherent acoustic phonons. Unlike in thermal equilibrium, where inelastic x-ray scattering is proportional to the phonon occupation, we show that the scattering is proportional to the phonon amplitude for coherent states. The wavevectors of the observed phonons extend beyond the excitation wavevector. The nanoparticles break the discrete translational symmetry of the lattice, enabling the generation of large wavevector coherent phonons. Elastic scattering of x-ray photons from the nanoparticles provides a reference for heterodyne mixing, yielding signals proportional to the phonon amplitude.

8.
Nat Commun ; 7: 12291, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27447688

ABSTRACT

The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV-VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instability and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties.

9.
Opt Express ; 22(14): 17423-9, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25090555

ABSTRACT

Single-cycle terahertz fields generated by coherent transition radiation from a relativistic electron beam are used to study the high field optical response of single crystal GaAs. Large amplitude changes in the sub-band-gap optical absorption are induced and probed dynamically by measuring the absorption of a broad-band optical beam generated by transition radiation from the same electron bunch, providing an absolutely synchronized pump and probe geometry. This modification of the optical properties is consistent with strong-field-induced electroabsorption. These processes are pertinent to a wide range of nonlinear terahertz-driven light-matter interactions anticipated at accelerator-based sources.

10.
Phys Rev Lett ; 112(16): 163901, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24815649

ABSTRACT

We report clear experimental evidence for second harmonic generation at hard x-ray wavelengths. Using a 1.7 Å pumping beam generated by a free electron laser, we observe second harmonic generation in diamond. The generated second harmonic is of order 10 times the background radiation, scales quadratically with pump pulse energy, and is generated over a narrow phase-matching condition. Of importance for future experiments, our results indicate that it is possible to observe nonlinear x-ray processes in crystals at pump intensities exceeding 1016 W/cm2.

11.
Struct Dyn ; 1(3): 034301, 2014 May.
Article in English | MEDLINE | ID: mdl-26798776

ABSTRACT

We report measurements of the transient structural response of weakly photo-excited thin films of BiFeO3, Pb(Zr,Ti)O3, and Bi and time-scales for interfacial thermal transport. Utilizing picosecond x-ray diffraction at a 1.28 MHz repetition rate with time resolution extending down to 15 ps, transient changes in the diffraction angle are recorded. These changes are associated with photo-induced lattice strains within nanolayer thin films, resolved at the part-per-million level, corresponding to a shift in the scattering angle three orders of magnitude smaller than the rocking curve width and changes in the interlayer lattice spacing of fractions of a femtometer. The combination of high brightness, repetition rate, and stability of the synchrotron, in conjunction with high time resolution, represents a novel means to probe atomic-scale, near-equilibrium dynamics.

12.
Phys Rev Lett ; 110(4): 047401, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-25166198

ABSTRACT

Illumination with laser sources leads to the creation of excited electronic states of particular symmetries, which can drive isosymmetric vibrations. Here, we use a combination of ultrafast stimulated and cw spontaneous Raman scattering to determine the lifetime of A(1g) and E(g) electronic coherences in Bi and Sb. Our results both shed new light on the mechanisms of coherent phonon generation and represent a novel way to probe extremely fast electron decoherence rates. The E(g) state, resulting from an unequal distribution of carriers in three equivalent band regions, is extremely short lived. Consistent with theory, the lifetime of its associated driving force reaches values as small as 2 (6) fs for Bi (Sb) at 300 K.

13.
Phys Rev Lett ; 110(12): 127404, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-25166848

ABSTRACT

We investigate the order parameter dynamics of the stripe-ordered nickelate, La(1.75)Sr(0.25)NiO(4), using time-resolved resonant x-ray diffraction. In spite of distinct spin and charge energy scales, the two order parameters' amplitude dynamics are found to be linked together due to strong coupling. Additionally, the vector nature of the spin sector introduces a longer reorientation time scale which is absent in the charge sector. These findings demonstrate that the correlation linking the symmetry-broken states does not unbind during the nonequilibrium process, and the time scales are not necessarily associated with the characteristic energy scales of individual degrees of freedom.

14.
Nature ; 488(7413): 603-8, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22932384

ABSTRACT

Light-matter interactions are ubiquitous, and underpin a wide range of basic research fields and applied technologies. Although optical interactions have been intensively studied, their microscopic details are often poorly understood and have so far not been directly measurable. X-ray and optical wave mixing was proposed nearly half a century ago as an atomic-scale probe of optical interactions but has not yet been observed owing to a lack of sufficiently intense X-ray sources. Here we use an X-ray laser to demonstrate X-ray and optical sum-frequency generation. The underlying nonlinearity is a reciprocal-space probe of the optically induced charges and associated microscopic fields that arise in an illuminated material. To within the experimental errors, the measured efficiency is consistent with first-principles calculations of microscopic optical polarization in diamond. The ability to probe optical interactions on the atomic scale offers new opportunities in both basic and applied areas of science.

15.
Nat Commun ; 3: 838, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22588300

ABSTRACT

The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La(1.75)Sr(0.25)NiO(4) to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

16.
Opt Express ; 20(10): 11396-406, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22565760

ABSTRACT

The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.


Subject(s)
Optics and Photonics/methods , Electrochemistry/methods , Electronics , Electrons , Equipment Design , Lasers , Photons , Semiconductors , Time Factors , X-Rays
17.
Phys Rev Lett ; 107(23): 233001, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22182083

ABSTRACT

We show that high fluence, high-intensity x-ray pulses from the world's first hard x-ray free-electron laser produce nonlinear phenomena that differ dramatically from the linear x-ray-matter interaction processes that are encountered at synchrotron x-ray sources. We use intense x-ray pulses of sub-10-fs duration to first reveal and subsequently drive the 1s↔2p resonance in singly ionized neon. This photon-driven cycling of an inner-shell electron modifies the Auger decay process, as evidenced by line shape modification. Our work demonstrates the propensity of high-fluence, femtosecond x-ray pulses to alter the target within a single pulse, i.e., to unveil hidden resonances, by cracking open inner shells energetically inaccessible via single-photon absorption, and to consequently trigger damaging electron cascades at unexpectedly low photon energies.

18.
Phys Rev Lett ; 106(8): 083002, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21405568

ABSTRACT

The nonlinear absorption mechanisms of neon atoms to intense, femtosecond kilovolt x rays are investigated. The production of Ne(9+) is observed at x-ray frequencies below the Ne(8+), 1s(2) absorption edge and demonstrates a clear quadratic dependence on fluence. Theoretical analysis shows that the production is a combination of the two-photon ionization of Ne(8+) ground state and a high-order sequential process involving single-photon production and ionization of transient excited states on a time scale faster than the Auger decay. We find that the nonlinear direct two-photon ionization cross section is orders of magnitude higher than expected from previous calculations.

19.
Opt Express ; 18(17): 17620-30, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20721148

ABSTRACT

The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.


Subject(s)
Electrons , Lasers , Synchrotrons , Equipment Design , Optical Fibers , Time Factors , X-Rays
20.
Nature ; 466(7302): 56-61, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20596013

ABSTRACT

An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10(18) W cm(-2), 1.5-0.6 nm, approximately 10(5) X-ray photons per A(2)). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse-by sequentially ejecting electrons-to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces 'hollow' atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...