Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864594

ABSTRACT

It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata. The results showed that Cd inhibited cell density, increased reactive oxygen species (ROS) production (up to 308% at 0.075 mg L-1 of Cd), chlorophyll a (Chl a) fluorescence (0.050-0.100 mg L-1 of Cd), cell size (0.025-0.100 mg L-1 of Cd), and cell complexity in all concentrations evaluated. Nickel exposure decreased ROS production by up to 25% at 0.25 mg L-1 of Ni and Chl a fluorescence in all concentrations assessed. Cell density and oxygen-evolving complex (initial fluorescence/variable fluorescence [F0/Fv]) were only affected at 0.5 mg L-1 of Ni. In terms of algal growth, mixture toxicity showed antagonism at low doses and synergism at high doses, with a dose level change greater than the median inhibitory concentration. The independent action model and dose-level-dependent deviation best fit our data. Cadmium and Ni mixtures resulted in a significant increase in cell size and cell complexity, as well as changes in ROS production and Chl a fluorescence, and they did not affect the photosynthetic parameters. Environ Toxicol Chem 2024;00:1-15. © 2024 SETAC.

2.
Chemosphere ; 288(Pt 2): 132536, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34637867

ABSTRACT

Silver-based materials have microbicidal action, photocatalytic activity and electronic properties. The increase in manufacturing and consumption of these compounds, given their wide functionality and application, is a source of contamination to freshwater ecosystems and causes toxicity to aquatic biota. Therefore, for the first time, we evaluated the toxicity of the silver tungstate (α-Ag2WO4), in different morphologies (cube and rod), for the microalga Raphidocelis subcapitata. To investigate the toxicity, we evaluated the growth rate, cell complexity and size, reactive oxygen species (ROS) production and chlorophyll a (Chl a) fluorescence. The α-Ag2WO4 - R (rod) was 1.7 times more toxic than α-Ag2WO4-C (cube), with IC10 and IC50 values of, respectively, 8.68 ± 0.91 µg L-1 and 13.72 ± 1.48 µg L-1 for α-Ag2WO4 - R and 18.60 ± 1.61 µg L-1 and 23.47 ± 1.16 µg L-1 for α-Ag2WO4-C. The release of silver ions was quantified and indicated that the silver ions dissolution from the α-Ag2WO4 - R ranged from 34 to 71%, while the Ag ions from the α-Ag2WO4-C varied from 35 to 97%. The α-Ag2WO4-C induced, after 24 h exposure, the increase of ROS at the lowest concentrations (8.81 and 19.32 µg L-1), whereas the α-Ag2WO4 - R significantly induced ROS production at 96 h at the highest concentration (31.76 µg L-1). Both microcrystal shapes significantly altered the cellular complexity and decreased the Chl a fluorescence at all tested concentrations. We conclude that the different morphologies of α-Ag2WO4 negatively affect the microalga and are important sources of silver ions leading to harmful consequences to the aquatic ecosystem.


Subject(s)
Ecosystem , Microalgae , Biota , Chlorophyll A , Fresh Water
3.
Ecotoxicol Environ Saf ; 208: 111628, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396148

ABSTRACT

Metals may cause damage to the biota of contaminated environments. Moreover, using multiple endpoints in ecotoxicological studies is useful to better elucidate the mechanisms of toxicity of these compounds. Therefore, this study aimed to evaluate the effects of cadmium (Cd) and cobalt (Co) on growth, biochemical and photosynthetic parameters of the microalgae Raphidocelis subcapitata, through quantification of lipid classes composition, chlorophyll a (Chl a) content, maximum (ΦM) and effective (Φ'M) quantum yields and efficiency of the oxygen-evolving complex (OEC). Both metals affected the algal population growth, with an IC50-96h of 0.67 and 1.53 µM of Cd and Co, respectively. Moreover, the metals led to an increase in the total lipid content and reduced efficiency of OEC and ΦM. Cell density was the most sensitive endpoint to detect Cd toxicity after 96 h of treatment. Regarding Co, the photosynthetic parameters were the most affected and the total lipid content was the most sensitive endpoint as it was altered by the exposure to this metal in all concentrations. Cd led to increased contents of the lipid class wax esters (0.89 µM) and phospholipids (PL - at 0.89 and 1.11 µM) and decreased values of triglycerides (at 0.22 µM) and acetone-mobile polar lipids (AMPL - at 0.44 and 1.11 µM). The percentage of free fatty acids (FFA) and PL of microalgae exposed to Co increased, whereas AMPL decreased in all concentrations tested. We were able to detect differences between the toxicity mechanisms of each metal, especially how Co interferes in the microalgae at a biochemical level. Furthermore, to the best of our knowledge, this is the first study reporting Co effects in lipid classes of a freshwater Chlorophyceae. The damage caused by Cd and Co may reach higher trophic levels, causing potential damage to the aquatic communities as microalgae are primary producers and the base of the food chain.


Subject(s)
Cadmium/toxicity , Chlorophyceae/physiology , Cobalt/toxicity , Water Pollutants, Chemical/toxicity , Chlorophyceae/drug effects , Chlorophyll A , Ecotoxicology , Fresh Water/chemistry , Metals/pharmacology , Microalgae/drug effects , Photosynthesis/drug effects , Photosystem II Protein Complex
SELECTION OF CITATIONS
SEARCH DETAIL
...