Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 254(Pt 3): 127896, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931862

ABSTRACT

Pectin is a valuable product that can be extracted from waste fruit peels. Here we propose the use of graphene oxide (GO)-based membranes for pectin concentration. The synthesized GO was functionalized with ethylenediamine (EDA) to molecularly design the GO framework. Kaolin hollow fibers with asymmetric pore distribution were used as a porous substrate for GO/EDA deposition. A GO/EDA layer with a thickness of 2.86 ± 0.24 µm was assembled on the substrate by the simple vacuum-assisted deposition method. After GO/EDA depositions, the water permeance of the pristine kaolin hollow fibers reduced from 8.46 ± 0.17 to 0.52 ± 0.03 L h-1·m-2·kPa-1. A pectin aqueous extract from orange peels was filtered at cross-flow mode through the prepared membranes and the steady-state fluxes through pristine and GO/EDA-coated hollow fibers were 56 ± 2 and 20 ± 3 L h-1 m-2, respectively. The GO/EDA-coated membrane presented greater pectin selectivity than the pristine hollow fiber. The GO/EDA-coated hollow fiber concentrated the galacturonic acid, phenolic, and methoxyl contents in 19.5, 17.4, and 29.2 %, respectively. Thus, filtration through the GO/EDA-based membrane is a suitable alternative for pectin concentration.


Subject(s)
Kaolin , Pectins , Water , Ethylenediamines
2.
Environ Sci Pollut Res Int ; 29(44): 66741-66756, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35508852

ABSTRACT

The photocatalytic degradation of methylene blue (MB) in aqueous solutions and under visible light was investigated with dispersed and supported zinc oxide (ZnO) as catalysts. The ZnO catalyst was successfully impregnated in asymmetric alumina hollow fibers by the simple vacuum-assisted dip-coating method. According to energy-dispersive analyses, the photocatalyst was homogenously distributed in the substrate. A strong correlation was observed between the initial dye concentration and the efficiency of the supported photocatalyst. For the initial MB concentration of 5 mg L-1 and catalyst dosage of 1 g L-1, the photocatalytic system with both dispersed and supported catalysts reached almost 100% of MB degradation. The photocatalytic process followed the pseudo-first-order kinetic model, and, for the initial MB concentration of 5 mg L-1, the apparent constants were 0.05415 and 0.00642 min-1 for suspended and supported catalysts, respectively. The treated MB solutions presented low phytotoxicity to the germination Lactuca sativa seeds with germination indexes greater than 80% after irrigation with the treated MB solutions. The produced supported ZnO catalyst showed suitable photocatalytic stability even after several reuse cycles.


Subject(s)
Nanoparticles , Zinc Oxide , Aluminum Oxide , Catalysis , Methylene Blue
3.
Environ Technol ; 33(4-6): 711-6, 2012.
Article in English | MEDLINE | ID: mdl-22629647

ABSTRACT

This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.


Subject(s)
Charcoal/chemistry , Cocos/chemistry , Drinking Water/analysis , Membranes, Artificial , Ultrafiltration/methods , Water Pollutants/isolation & purification , Water Purification/methods , Water Quality , Gravitation
SELECTION OF CITATIONS
SEARCH DETAIL
...