Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
ACS Sens ; 9(4): 1666-1681, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38551608

ABSTRACT

The hormone cortisol, released as the end-product of the hypothalamic-pituitary-adrenal (HPA) axis, has a well-characterized circadian rhythm that enables an allostatic response to external stressors. When the pattern of secretion is disrupted, cortisol levels are chronically elevated, contributing to diseases such as heart attacks, strokes, mental health disorders, and diabetes. The diagnosis of chronic stress and stress related disorders depends upon accurate measurement of cortisol levels; currently, it is quantified using mass spectroscopy or immunoassay, in specialized laboratories with trained personnel. However, these methods are time-consuming, expensive and are unable to capture the dynamic biorhythm of the hormone. This critical review traces the path of cortisol detection from traditional laboratory-based methods to decentralised cortisol monitoring biosensors. A complete picture of cortisol biology and pathophysiology is provided, and the importance of precision medicine style monitoring of cortisol is highlighted. Antibody-based immunoassays still dominate the pipeline of development of point-of-care biosensors; new capture molecules such as aptamers and molecularly imprinted polymers (MIPs) combined with technologies such as microfluidics, wearable electronics, and quantum dots offer improvements to limit of detection (LoD), specificity, and a shift toward rapid or continuous measurements. While a variety of different sensors and devices have been proposed, there still exists a need to produce quantitative tests for cortisol ─ using either rapid or continuous monitoring devices that can enable a personalized medicine approach to stress management. This can be addressed by synergistic combinations of technologies that can leverage low sample volumes, relevant limit of detection and rapid testing time, to better account for cortisol's shifting biorhythm. Trends in cortisol diagnostics toward rapid and continuous monitoring of hormones are highlighted, along with insights into choice of sample matrix.


Subject(s)
Biosensing Techniques , Hydrocortisone , Hydrocortisone/analysis , Humans , Biosensing Techniques/methods , Immunoassay/methods
2.
Sens Diagn ; 2(6): 1623-1637, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38013763

ABSTRACT

Measuring the complex processes of blood coagulation, haemostasis and thrombosis that are central to cardiovascular health and disease typically requires a choice between high-resolution low-throughput laboratory assays, or simpler less quantitative tests. We propose combining mass-produced microfluidic devices with open-source robotic instrumentation to enable rapid development of affordable and portable, yet high-throughput and performance haematological testing. A time- and distance-resolved fluid flow analysis by Raspberry Pi imaging integrated with controlled sample addition and illumination, enabled simultaneous tracking of capillary rise in 120 individual capillaries (∼160, 200 or 270 µm internal diameter), in 12 parallel disposable devices. We found time-resolved tracking of capillary rise in each individual microcapillary provides quantitative information about fluid properties and most importantly enables quantitation of dynamic changes in these properties following stimulation. Fluid properties were derived from flow kinetics using a pressure balance model validated with glycerol-water mixtures and blood components. Time-resolved imaging revealed fluid properties that were harder to determine from a single endpoint image or equilibrium analysis alone. Surprisingly, instantaneous superficial fluid velocity during capillary rise was found to be largely independent of capillary diameter at initial time points. We tested if blood function could be measured dynamically by stimulating blood with thrombin to trigger activation of global haemostasis. Thrombin stimulation slowed vertical fluid velocity consistent with a dynamic increase in viscosity. The dynamics were concentration-dependent, with highest doses reducing flow velocity faster (within 10 s) than lower doses (10-30 s). This open-source imaging instrumentation expands the capability of affordable microfluidic devices for haematological testing, towards high-throughput multi-parameter blood analysis needed to understand and improve cardiovascular health.

3.
Sens Diagn ; 2(3): 736-750, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37216011

ABSTRACT

Innovation in infection based point-of-care (PoC) diagnostics is vital to avoid unnecessary use of antibiotics and the development of antimicrobial resistance. Several groups including our research team have in recent years successfully miniaturised phenotypic antibiotic susceptibility tests (AST) of isolated bacterial strains, providing validation that miniaturised AST can match conventional microbiological methods. Some studies have also shown the feasibility of direct testing (without isolation or purification), specifically for urinary tract infections, paving the way for direct microfluidic AST systems at PoC. As rate of bacteria growth is intrinsically linked to the temperature of incubation, transferring miniaturised AST nearer the patient requires building new capabilities in terms of temperature control at PoC, furthermore widespread clinical use will require mass-manufacturing of microfluidic test strips and direct testing of urine samples. This study shows for the first-time application of microcapillary antibiotic susceptibility testing (mcAST) directly from clinical samples, using minimal equipment and simple liquid handling, and with kinetics of growth recorded using a smartphone camera. A complete PoC-mcAST system was presented and tested using 12 clinical samples sent to a clinical laboratory for microbiological analysis. The test showed 100% accuracy for determining bacteria in urine above the clinical threshold (5 out of 12 positive) and achieved 95% categorical agreement for 5 positive urines tested with 4 antibiotics (nitrofurantoin, ciprofloxacin, trimethoprim and cephalexin) within 6 h compared to the reference standard overnight AST method. A kinetic model is presented for metabolization of resazurin, demonstrating kinetics of degradation of resazurin in microcapillaries follow those observed for a microtiter plate, with time for AST dependent on the initial CFU ml-1 of uropathogenic bacteria in the urine sample. In addition, we show for the first time that use of air-drying for mass-manufacturing and deposition of AST reagents within the inner surface of mcAST strips matches results obtained with standard AST methods. These results take mcAST a step closer to clinical application, for example as PoC support for antibiotic prescription decisions within a day.

4.
Lab Chip ; 22(15): 2820-2831, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35792607

ABSTRACT

Counting viable bacterial cells and functional bacteriophage is fundamental to microbiology underpinning research, surveillance, biopharmaceuticals and diagnostics. Colony forming unit (CFU) and plaque forming unit (PFU) counting still requires slow and laborious solid culture on agar in Petri dishes or plates. Here, we show that dip-stick microfluidic strips can be used without growth indicator dye for rapid and simple CFU ml-1 and PFU ml-1 measurement. We demonstrate for the first time that fluoropolymer microcapillaries combined with digital imaging allow bacteriophage plaques to be counted rapidly in a dip-and-test format. The microfluidic length scales offer a linear 1-dimensional alternative to a 2D solid agar medium surface, with colonies or plaques clearly visible as "dashes" or "gaps". An inexpensive open source darkfield biosensor system using Raspberry Pi imaging permits label-free detection and counting of colonies or plaques within 4-8 hours in a linear, liquid matrix within ∼200 µm inner diameter microcapillaries. We obtained full quantitative agreement between 1D microfluidic colony counting in dipsticks versus conventional 2D solid agar Petri dish plates for S. aureus and E. coli, and for T2 phage and phage K, but up to 6 times faster. Time-lapse darkfield imaging permitted detailed kinetic analysis of colony growth in the microcapillaries, providing new insight into microfluidic microbiology and colony growth, not possible with Petri dishes. Surprisingly, whilst E. coli colonies appeared earlier, subsequent colony expansion was faster along the microcapillaries for S. aureus. This may be explained by the microenvironment offered for 1D colony growth within microcapillaries, linked to a mass balance between nutrient (glucose) diffusion and bacterial growth kinetics. Counting individual colonies in liquid medium was not possible for motile strains that spread rapidly along the capillary, however inclusion of soft agar inhibited spreading, making this new simple dip-and-test counting method applicable to both motile and non-motile bacteria. Label-free dipstick colony and plaque counting has potential for many analytical microbial tasks, and the innovation of 1D colony counting has relevance to other microfluidic microbiology.


Subject(s)
Bacteriophages , Agar , Bacteria , Colony Count, Microbial , Escherichia coli , Kinetics , Microfluidics , Staphylococcus aureus
5.
ACS Sens ; 6(12): 4338-4348, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34854666

ABSTRACT

A range of biosensing techniques including immunoassays are routinely used for quantitation of analytes in biological samples and available in a range of formats, from centralized lab testing (e.g., microplate enzyme-linked immunosorbent assay (ELISA)) to automated point-of-care (POC) and lateral flow immunochromatographic tests. High analytical performance is intrinsically linked to the use of a sequence of reagent and washing steps, yet this is extremely challenging to deliver at the POC without a high level of fluidic control involving, e.g., automation, fluidic pumping, or manual fluid handling/pipetting. Here we introduce a microfluidic siphon concept that conceptualizes a multistep ″dipstick″ for quantitative, enzymatically amplified immunoassays using a strip of microporous or microbored material. We demonstrated that gravity-driven siphon flow can be realized in single-bore glass capillaries, a multibored microcapillary film, and a glass fiber porous membrane. In contrast to other POC devices proposed to date, the operation of the siphon is only dependent on the hydrostatic liquid pressure (gravity) and not capillary forces, and the unique stepwise approach to the delivery of the sample and immunoassay reagents results in zero dead volume in the device, no reagent overlap or carryover, and full start/stop fluid control. We demonstrated applications of a 10-bore microfluidic siphon as a portable ELISA system without compromised quantitative capabilities in two global diagnostic applications: (1) a four-plex sandwich ELISA for rapid smartphone dengue serotype identification by serotype-specific dengue virus NS1 antigen detection, relevant for acute dengue fever diagnosis, and (2) quantitation of anti-SARS-CoV-2 IgG and IgM titers in spiked serum samples. Diagnostic siphons provide the opportunity for high-performance immunoassay testing outside sophisticated laboratories, meeting the rapidly changing global clinical and public health needs.


Subject(s)
COVID-19 , Microfluidics , Enzyme-Linked Immunosorbent Assay , Humans , Immunoassay , SARS-CoV-2
6.
ACS Sens ; 6(7): 2682-2690, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34138534

ABSTRACT

The performance of biosensors is often optimized in buffers, which brings inconsistencies during applications with biological samples. Current strategies for minimizing sample (matrix) interference are complex to automate and miniaturize, involving, e.g., sample dilution or recovery of serum/plasma. This study shows the first systematic analysis using hundreds of actual microfluidic immunoassay fluoropolymer strips to understand matrix interference in microflow systems. As many interfering factors are assay-specific, we have explored matrix interference for a range of enzymatic immunoassays, including a direct mIgG/anti-mIgG, a sandwich cancer biomarker PSA, and a sandwich inflammatory cytokine IL-1ß. Serum matrix interference was significantly affected by capillary antibody surface coverage, suggesting for the first time that the main cause of the serum matrix effect is low-affinity serum components (e.g., autoantibodies) competing with high-affinity antigens for the immobilized antibody. Additional experiments carried out with different capillary diameters confirmed the importance of antibody surface coverage in managing matrix interference. Building on these findings, we propose a novel analytical approach where antibody surface coverage and sample incubation times are key for eliminating and/or minimizing serum matrix interference, consisting in bioassay optimization carried out in serum instead of buffer, without compromising the performance of the bioassay or adding extra cost or steps. This will help establishing a new route toward faster development of modern point-of-care tests and effective biosensor development.


Subject(s)
Biosensing Techniques , Microfluidics , Antibodies , Immunoassay , Point-of-Care Testing
7.
Biosens Bioelectron ; 145: 111624, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31546201

ABSTRACT

In spite of the clinical need, there is a major gap in rapid diagnostics for identification and quantitation of E. coli and other pathogens, also regarded as the biggest bottleneck in the fight against the spread of antimicrobial resistant bacterial strains. This study reports for the first time an optical, smartphone-based microfluidic fluorescence sandwich immunoassay capable of quantifying E. coli in buffer and synthetic urine in less than 25 min without sample preparation nor concentration. A limit of detection (LoD) up to 240 CFU/mL, comensurate with cut-off for UTIs (103-105 CFUs/mL) was achieved. Replicas of full response curves performed with 100-107 CFUs/mL of E. coli K12 in synthetic urine yielded recovery values in the range 80-120%, assay reproducibility below 30% and precision below 20%, therefore similar to high-performance automated immunoassays. The unrivalled LoD was mainly linked to the 'open fluidics' nature of the 10-bore microfluidic strips used that enabled passing a large volume of sample through the microcapillaries coated with capture antibody. The new smartphone based test has the potential of being as a rapid, point-of-care test for rule-in of E. coli infections that are responsible for around 80% of UTIs, helping to stop the over-prescription of antibiotics and the monitoring of patients with other symptomatic communicable diseases caused by E. coli at global scale.


Subject(s)
Biosensing Techniques , Escherichia coli K12/isolation & purification , Smartphone , Urinary Tract Infections/microbiology , Escherichia coli K12/pathogenicity , Humans , Immunoassay , Microfluidics
8.
J Chromatogr A ; 1585: 46-55, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30514589

ABSTRACT

This study presents novel experimental insights into the direct quantitation and immunocapture of bacteria cells in a fluoropolymer microcapillary array, using Escherichia coli as work model, a pathogen responsible for around 80% of urinary tract infections (UTIs). In spite of the current clinical demand for sensitive tests for rapid identification and quantitation of pathogens in human samples, portable diagnostic tests developed to date lack the specificity, limit of detection and speed for effective implementation in bacteria detection at point-of-care. The 'open microfluidic' approach presented in this work directly addresses those challenges. We report for the first time evidence of immunocapture of bacteria using polyclonal antibodies immobilized on the inner surface of an inexpensive 10-bore, 200 µm internal diameter FEP-Teflon® MicroCapillary Film, with a limit of detection (LoD) of at just 1 colony forming unit (CFU). In capillaries coated with less than a full monolayer of capture antibody, we observed a first order equilibrium, with bacteria captured (in CFUs/ml) linearly proportional to the CFU/ml in the incubated sample. We captured up to 100% of E. coli cells, with clear evidence of immunospecificity as demonstrated by testing with a different bacteria specie (in this case Bacillus subtillis). We noticed gravity settling of bacteria within the capillaries created a gradient of concentration which on the overall enhanced the capturing of cells up to 6 orders of magnitude beyond the theoretic full monolayer (∼4.5 × 104 CFUs/ml), with washings having an unnoticeable effect. Our data particularly highlights quantitatively the relevance of interrogation volume in respect to the miniaturisation of bacteria quantitation, which cannot be solved with the most sophisticated imaging equipment. A further set of continuous flow experiments at a flow rate of just ∼1 µl/min (corresponding to a wall shear rate of ∼101 s-1 and superficial flow velocity ∼53 µm/s) showed a degree of flow focusing, yet the mobility, antibody affinity capturing and gravity settling of bacteria cells enabled successful capturing in the microcapillaries. These results will inform the future development of effective microfluidic approaches for rapid point-of-care quantitation of bacterial pathogens and in particular rule-in of E. coli in UTIs.


Subject(s)
Escherichia coli/isolation & purification , Microfluidics , Urinalysis/methods , Urinary Tract Infections/microbiology , Humans , Immunochemistry , Limit of Detection , Urinary Tract Infections/diagnosis
9.
J Hazard Mater ; 349: 195-204, 2018 05 05.
Article in English | MEDLINE | ID: mdl-29427970

ABSTRACT

The concentration of antiretroviral drugs in wastewater treatment plants (WWTP) effluents and surface waters of many countries has increased significantly due to their widespread use for HIV treatment. In this study, the removal of stavudine and zidovudine under UV254 photolysis or UV254/H2O2 was investigated in a microcapillary film (MCF) photoreactor, using minimal water samples quantities. The UV254 quantum yield of zidovudine, (2.357 ±â€¯0.0589)·10-2 mol ein-1 (pH 4.0-8.0), was 28-fold higher that the yield of stavudine (8.34 ±â€¯0.334)·10-4 mol ein-1 (pH 6.0-8.0). The second-order rate constant kOH,iof reaction of hydroxyl radical with the antiretrovirals (UV254/H2O2 process) were determined by kinetics modeling: (9.98 ±â€¯0.68)·108 M-1 s-1 (pH 4.0-8.0) for zidovudine and (2.03 ±â€¯0.18)·109 M-1 s-1 (pH 6.0-8.0) for stavudine. A battery of ecotoxicological tests (i.e. inhibition growth, bioluminescence, mutagenic and genotoxic activity) using bacteria (Aliivibrio fischeri, Salmonella typhimurium), crustacean (Daphnia magna) and algae (Raphidocelis subcapitata) revealed a marked influence of the UV dose on the ecotoxicological activity. The UV254/H2O2 treatment process reduced the ecotoxicological risk associated to direct photolysis of the antiretrovirals aqueous solutions, but required significantly higher UV254 doses (≥2000 mJ cm-2) in comparison to common water UV disinfection processes.


Subject(s)
Anti-Retroviral Agents , Hydrogen Peroxide , Stavudine , Ultraviolet Rays , Water Pollutants, Chemical , Zidovudine , Aliivibrio fischeri/drug effects , Aliivibrio fischeri/growth & development , Animals , Anti-Retroviral Agents/chemistry , Anti-Retroviral Agents/toxicity , Daphnia/drug effects , Daphnia/physiology , Ecotoxicology , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/radiation effects , Kinetics , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Stavudine/chemistry , Stavudine/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Zidovudine/chemistry , Zidovudine/toxicity
10.
Bionanoscience ; 7(4): 718-726, 2017.
Article in English | MEDLINE | ID: mdl-29214121

ABSTRACT

Rapid and quantitative prostate-specific antigen (PSA) biomarker detection would be beneficial to cancer diagnostics, improving early detection and therefore increasing chances of survival. Nanoparticle-based detection is routinely used in one-step nitrocellulose-based lateral flow (LF) immunoassays; however, it is well established within the scientific diagnostic community that LF technology lacks sensitivity for measuring biomarkers, such as prostate-specific antigen (PSA). A trend in point-of-care (POC) protein biomarker quantitation is the miniaturization of immunoassays in microfluidic devices. This work aimed at testing the feasibility of carbon and gold nanoparticles as immunoassay labels for PSA detection with cost-effective optical detection in a novel microfluidic POC platform called microcapillary film (MCF), consisting of a parallel array of fluoropolymer microcapillaries with 200-µm internal diameter. With neutravidin-coated carbon, nanoparticles were able to quantify an immobilized biotinylated monoclonal antibody (coating solution from 10 to 40 µg/ml) and PSA was successfully quantified in a sandwich assay using silver-enhanced gold nanoparticles and a flatbed scanner; yet, the dynamic range was limited to 10-100 ng/ml. Although direct optical detection of PSA without enzymatic amplification or fluorophores is possible and technically appealing for the simplified fluidics and signal scanning setups involved, ultimately, the binding of a thin layer of nanoparticles onto the wall of transparent microcapillaries is not sufficient to cause a significant drop on the optical colorimetric signal. Future studies will explore the use of fluorescence nanoparticles.

11.
Water Res ; 122: 591-602, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28628881

ABSTRACT

The photochemical and ecotoxicological fate of acyclovir (ACY) through UV254 direct photolysis and in the presence of hydroxyl radicals (UV254/H2O2 process) were investigated in a microcapillary film (MCF) array photoreactor, which provided ultrarapid and accurate photochemical reaction kinetics. The UVC phototransformation of ACY was found to be unaffected by pH in the range from 4.5 to 8.0 and resembled an apparent autocatalytic reaction. The proposed mechanism included the formation of a photochemical intermediate (ϕACY = (1.62 ± 0.07)·10-3 mol ein-1) that further reacted with ACY to form by-products (k' = (5.64 ± 0.03)·10-3 M-1 s-1). The photolysis of ACY in the presence of hydrogen peroxide accelerated the removal of ACY as a result of formation of hydroxyl radicals. The kinetic constant for the reaction of OH radicals with ACY (kOH/ACY) determined with the kinetic modeling method was (1.23 ± 0.07)·109 M-1 s-1 and with the competition kinetics method was (2.30 ± 0.11)·109 M-1 s-1 with competition kinetics. The acute and chronic effects of the treated aqueous mixtures on different living organisms (Vibrio fischeri, Raphidocelis subcapitata, D. magna) revealed significantly lower toxicity for the samples treated with UV254/H2O2 in comparison to those collected during UV254 treatment. This result suggests that the addition of moderate quantity of hydrogen peroxide (30-150 mg L-1) might be a useful strategy to reduce the ecotoxicity of UV254 based sanitary engineered systems for water reclamation.


Subject(s)
Acyclovir/chemistry , Antiviral Agents/chemistry , Hydrogen Peroxide , Photolysis , Ecotoxicology , Kinetics , Oxidation-Reduction , Ultraviolet Rays , Water , Water Pollutants, Chemical
12.
Analyst ; 142(6): 858-882, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28217778

ABSTRACT

The latest clinical procedures for the timely and cost-effective diagnosis of chronic and acute clinical conditions, such as cardiovascular diseases, cancer, chronic respiratory diseases, diabetes or sepsis (i.e. the biggest causes of death worldwide), involve the quantitation of specific protein biomarkers released into the blood stream or other physiological fluids (e.g. urine or saliva). The clinical thresholds are usually in the femtomolar to picolomar range, and consequently the measurement of these protein biomarkers heavily relies on highly sophisticated, bulky and automated equipment in centralised pathology laboratories. The first microfluidic devices capable of measuring protein biomarkers in miniaturised immunoassays were presented nearly two decades ago and promised to revolutionise point-of-care (POC) testing by offering unmatched sensitivity and automation in a compact POC format; however, the development and adoption of microfluidic protein biomarker tests has fallen behind expectations. This review presents a detailed critical overview into the pipeline of microfluidic devices developed in the period 2005-2016 capable of measuring protein biomarkers from the pM to fM range in formats compatible with POC testing, with a particular focus on the use of affordable microfluidic materials and compact low-cost signal interrogation. The integration of these two important features (essential unique selling points for the successful microfluidic diagnostic products) has been missed in previous review articles and explain the poor adoption of microfluidic technologies in this field. Most current miniaturised devices compromise either on the affordability, compactness and/or performance of the test, making current tests unsuitable for the POC measurement of protein biomarkers. Seven core technical areas, including (i) the selected strategy for antibody immobilisation, (ii) the surface area and surface-area-to-volume ratio, (iii) surface passivation, (iv) the biological matrix interference, (v) fluid control, (vi) the signal detection modes and (vii) the affordability of the manufacturing process and detection system, were identified as the key to the effective development of a sensitive and affordable microfluidic protein biomarker POC test.


Subject(s)
Biomarkers/analysis , Immunoassay , Lab-On-A-Chip Devices , Point-of-Care Systems , Humans , Microfluidic Analytical Techniques
13.
Analyst ; 142(6): 959-968, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28232992

ABSTRACT

This study reports for the first time the sensitive colorimetric and fluorescence detection of clinically relevant protein biomarkers by sandwich immunoassays using the covalent immobilisation of antibodies onto the fluoropolymer surface inside Teflon®-FEP microfluidic devices. Teflon®-FEP has outstanding optical transparency ideal for high-sensitivity colorimetric and fluorescence bioassays, however this thermoplastic is regarded as chemically inert and very hydrophobic. Covalent immobilisation can offer benefits over passive adsorption to plastic surfaces by allowing better control over antibody density, orientation and analyte binding capacity, and so we tested a range of different and novel covalent immobilisation strategies. We first functionalised the inner surface of a 10-bore, 200 µm internal diameter FEP microcapillary film with high-molecular weight polyvinyl alcohol (PVOH) without changing the outstanding optical transparency of the device delivered by the matched refractive index of FEP and water. Glutaraldehyde immobilisation was compared with the use of photoactivated linkers and NHS-ester crosslinkers for covalently immobilising capture antibodies onto PVOH. Three clinically relevant sandwich ELISAs were tested against the cytokine IL-1ß, the myocardial infarct marker cardiac troponin I (cTnI), and the chronic heart failure marker brain natriuretic peptide (BNP). Overall, glutaraldehyde immobilisation was effective for BNP assays, but yielded unacceptable background for IL-1ß and cTnI assays caused by direct binding of the biotinylated detection antibody to the modified PVOH surface. We found NHS-ester groups reacted with APTES-treated PVOH coated fluoropolymers. This facilitated a novel method for capture antibody immobilisation onto fluoropolymer devices using a bifunctional NHS-maleimide crosslinker. The density of covalently immobilised capture antibodies achieved using PVOH/APTES/NHS/maleimide approached levels seen with passive adsorption, and sensitive and quantitative assay performance was achieved using this method. Overall, the PVOH coating provided an excellent surface for controlled covalent antibody immobilisation onto Teflon®-FEP for performing high-sensitivity immunoassays.


Subject(s)
Antibodies, Immobilized/chemistry , Biomarkers/analysis , Immunoassay , Lab-On-A-Chip Devices , Polytetrafluoroethylene , Colorimetry , Humans , Interleukin-1beta/analysis , Natriuretic Peptide, Brain/analysis , Troponin I/analysis
14.
Lab Chip ; 16(15): 2891-9, 2016 08 07.
Article in English | MEDLINE | ID: mdl-27374435

ABSTRACT

A new microfluidic concept for multi-analyte testing in a dipstick format is presented, termed "Lab-on-a-Stick", that combines the simplicity of dipstick tests with the high performance of microfluidic devices. Lab-on-a-stick tests are ideally suited to analysis of particulate samples such as mammalian or bacterial cells, and capable of performing multiple different parallel microfluidic assays when dipped into a single sample with results recorded optically. The utility of this new diagnostics format was demonstrated by performing three types of multiplex cellular assays that are challenging to perform in conventional dipsticks: 1) instantaneous ABO blood typing; 2) microbial identification; and 3) antibiotic minimum inhibitory (MIC) concentration measurement. A pressure balance model closely predicted the superficial flow velocities in individual capillaries, that were overestimated by up to one order of magnitude by the Lucas-Washburn equation conventionally used for wicking in cylindrical pores. Lab-on-a-stick provides a cost-effective, simple, portable and flexible multiplex platform for a range of assays, and will deliver a new generation of advanced yet affordable point-of-care tests for global diagnostics.


Subject(s)
Bacterial Typing Techniques , Blood Grouping and Crossmatching/methods , Lab-On-A-Chip Devices , Microarray Analysis/methods , Microbial Sensitivity Tests , Algorithms , Animals , Bacterial Typing Techniques/instrumentation , Blood Grouping and Crossmatching/instrumentation , Humans , Hydrophobic and Hydrophilic Interactions , Microarray Analysis/instrumentation , Microbial Sensitivity Tests/instrumentation , Proof of Concept Study , Surface Properties
15.
Water Res ; 89: 375-83, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26735209

ABSTRACT

A microcapillary film reactor (MCF) was adopted to evaluate and compare the removal efficiency of benzoylecgonine (BE), an emerging micropollutant deriving from illicit drug abuse (cocaine), in different aqueous matrices: milliQ water, synthetic and real wastewater and surface water. The removal processes investigated were the direct photolysis with UV radiation at 254 nm, and the advanced oxidation process (AOP) with the same UV radiation and hydrogen peroxide. As a result of the microfluidics approach developed through an innovative experimental apparatus, full conversion of BE was reached within a few seconds or minutes of residence time in the MCF depending on the process conditions adopted. The radiation dose was estimated to be approximately 5.5 J cm(-2). The innovative MCF reactor was found to be an effective tool for photochemical studies, especially when using highly priced, uncommon, or regulated substances. The removal efficiency was affected by the nature of the aqueous matrix, due to the presence of different xenobiotics and natural compounds that act primarily as HO(•) radical scavengers and secondly as inner UV254 filters. Moreover, nano-liquid chromatography (LC)-high resolution-mass spectrometry analysis was utilized to identify the main reaction transformation products, showing the formation of hydroxylated aromatics during the photochemical treatment.


Subject(s)
Cocaine/analogs & derivatives , Hydrogen Peroxide/chemistry , Photolysis , Ultraviolet Rays , Chromatography, Liquid , Cocaine/analysis , Cocaine/chemistry , Cocaine/metabolism , Fresh Water/chemistry , Mass Spectrometry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods
16.
Biotechnol Bioeng ; 113(7): 1481-92, 2016 07.
Article in English | MEDLINE | ID: mdl-26694540

ABSTRACT

It has long been established that UVC light is a very effective method for inactivating pathogens in a fluid, yet the application of UVC irradiation to modern biotechnological processes is limited by the intrinsic short penetration distance of UVC light in optically dense protein solutions. This experimental and numerical study establishes that irradiating a fluid flowing continuously in a microfluidic capillary system, in which the diameter of the capillary is tuned to the depth of penetration of UVC light, uniquely treats the whole volume of the fluid to UVC light, resulting in fast and effective inactivation of pathogens, with particular focus to virus particles. This was demonstrated by inactivating human herpes simplex virus type-1 (HSV-1, a large enveloped virus) on a dense 10% fetal calf serum solution in a range of fluoropolymer capillary systems, including a 0.75 mm and 1.50 mm internal diameter capillaries and a high-throughput MicroCapillary Film with mean hydraulic diameter of 206 µm. Up to 99.96% of HSV-1 virus particles were effectively inactivated with a mean exposure time of up to 10 s, with undetectable collateral damage to solution proteins. The kinetics of virus inactivation matched well the results from a new mathematical model that considers the parabolic flow profile in the capillaries, and showed the methodology is fully predictable and scalable and avoids both the side effect of UVC light to proteins and the dilution of the fluid in current tubular UVC inactivation systems. This is expected to speed up the industrial adoption of non-invasive UVC virus inactivation in clinical biotechnology and biomanufacturing of therapeutic molecules. Biotechnol. Bioeng. 2016;113: 1481-1492. © 2015 Wiley Periodicals, Inc.


Subject(s)
Microfluidic Analytical Techniques/methods , Photolysis , Virion/radiation effects , Virus Inactivation/radiation effects , Herpesvirus 1, Human/radiation effects , Microfluidic Analytical Techniques/instrumentation , Models, Biological
17.
Analyst ; 140(16): 5609-18, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26120601

ABSTRACT

Sensitive quantitation of multiple cytokines can provide important diagnostic information during infection, inflammation and immunopathology. In this study sensitive immunoassay detection of human cytokines IL-1ß, IL-6, IL-12p70 and TNFα is shown for singleplex and multiplex formats using a novel miniaturized ELISA platform. The platform uses a disposable plastic multi-syringe aspirator (MSA) integrating 8 disposable fluoropolymer microfluidic test strips, each containing an array of ten 200 µm mean i.d. microcapillaries coated with a set of monoclonal antibodies. Each MSA device thus performs 10 tests on 8 samples, delivering 80 measurements. Unprecedented levels of sensitivity were obtained with the novel fluoropolymer microfluidic material and simple colorimetric detection in a flatbed scanner. The limit of detection for singleplex detection ranged from 2.0 to 15.0 pg ml(-1), i.e. 35 and 713 femtomolar for singleplex cytokine detection, and the intra- and inter-assay coefficient of variation (CV) remained within 10%. In addition, a triplex immunoassay was developed for measuring IL-1ß, IL-12p70 and TNFα simultaneously from a given sample in the pg ml(-1) range. These assays permit high sensitivity measurement with rapid <15 min assay or detection from undiluted blood serum. The portability, speed and low-cost of this system are highly suited to point-of-care testing and field diagnostics applications.


Subject(s)
Blood Chemical Analysis/methods , Cytokines/blood , Polymers/chemistry , Colorimetry , Enzyme-Linked Immunosorbent Assay , Fluorine/chemistry , Humans , Limit of Detection , Surface Properties , Time Factors
18.
Biosens Bioelectron ; 70: 5-14, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25775968

ABSTRACT

We present a new, power-free and flexible detection system named MCFphone for portable colorimetric and fluorescence quantitative sandwich immunoassay detection of prostate specific antigen (PSA). The MCFphone is composed by a smartphone integrated with a magnifying lens, a simple light source and a miniaturised immunoassay platform, the Microcapillary Film (MCF). The excellent transparency and flat geometry of fluoropolymer MCF allowed quantitation of PSA in the range 0.9 to 60 ng/ml with<7% precision in 13 min using enzymatic amplification and a chromogenic substrate. The lower limit of detection was further improved from 0.4 to 0.08 ng/ml in whole blood samples with the use of a fluorescence substrate. The MCFphone has shown capable of performing rapid (13 to 22 min total assay time) colorimetric quantitative and highly sensitive fluorescence tests with good %Recovery, which represents a major step in the integration of a new generation of inexpensive and portable microfluidic devices with commercial immunoassay reagents and off-the-shelf smartphone technology.


Subject(s)
Fluoroimmunoassay/instrumentation , Lab-On-A-Chip Devices , Prostate-Specific Antigen/blood , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis , Smartphone , Biomarkers, Tumor/blood , Biosensing Techniques/instrumentation , Colorimetry/instrumentation , Diagnosis, Computer-Assisted/methods , Equipment Design , Equipment Failure Analysis , Humans , Male , Miniaturization , Mobile Applications , Point-of-Care Testing , Reproducibility of Results , Sensitivity and Specificity , Telemedicine/instrumentation
19.
Lab Chip ; 14(16): 2918-28, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24989886

ABSTRACT

We present a new concept for rapid and fully portable prostate specific antigen (PSA) measurements, termed "lab-in-a-briefcase", which integrates an affordable microfluidic ELISA platform utilising a melt-extruded fluoropolymer microcapillary film (MCF) containing an array of 10 200 µm internal diameter capillaries, a disposable multi-syringe aspirator (MSA), a sample tray pre-loaded with all of the required immunoassay reagents, and a portable film scanner for colorimetric signal digital quantification. Each MSA can perform 10 replicate microfluidic immunoassays on 8 samples, allowing 80 measurements to be made in less than 15 minutes based on semi-automated operation, without the need of additional fluid handling equipment. The assay was optimised for the measurement of a clinically relevant range of PSA of 0.9 to 60.0 ng ml(-1) in 15 minutes with CVs on the order of 5% based on intra-assay variability when read using a consumer flatbed film scanner. The PSA assay performance in the MSA remained robust in undiluted or 1 : 2 diluted human serum or whole blood, and the matrix effect could simply be overcome by extending sample incubation times. The PSA "lab-in-a-briefcase" is particularly suited to a low-resource health setting, where diagnostic labs and automated immunoassay systems are not accessible, by allowing PSA measurement outside the laboratory using affordable equipment.


Subject(s)
Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Microfluidic Analytical Techniques/instrumentation , Prostate-Specific Antigen/blood , Humans , Kinetics , Male
20.
Lab Chip ; 11(24): 4267-73, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22030675

ABSTRACT

We present a simple device for multiplex quantitative enzyme-linked immunosorbant assays (ELISA) made from a novel melt-extruded microcapillary film (MCF) containing a parallel array of 200 µm capillaries along its length. To make ELISA devices different protein antigens or antibodies were immobilised inside individual microcapillaries within long reels of MCF extruded from fluorinated ethylene propylene (FEP). Short pieces of coated film were cut and interfaced with a pipette, allowing sequential uptake of samples and detection solutions into all capillaries from a reagent well. As well as being simple to produce, these FEP MCF devices have excellent light transmittance allowing direct optical interrogation of the capillaries for simple signal quantification. Proof of concept experiments demonstrate both quantitative and multiplex assays in FEP MCF devices using a standard direct ELISA procedure and read using a flatbed scanner. This new multiplex immunoassay platform should find applications ranging from lab detection to point-of-care and field diagnostics.


Subject(s)
Enzyme-Linked Immunosorbent Assay/instrumentation , Plastics/chemistry , Animals , Antibodies/blood , Antibodies/immunology , Equipment Design , Goats , Hepatitis B Core Antigens/immunology , Humans , Mice , Microfluidic Analytical Techniques/instrumentation , Point-of-Care Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...