Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Biol ; 43(2): e20180290, 2020.
Article in English | MEDLINE | ID: mdl-32478791

ABSTRACT

Water deficit is one of the major limitations to soybean production worldwide, yet the genetic basis of drought-responsive mechanisms in crops remains poorly understood. In order to study the gene expression patterns in leaves and roots of soybean, two contrasting genotypes, Embrapa 48 (drought-tolerant) and BR 16 (drought-sensitive), were evaluated under moderate and severe water deficit. Transcription factors from the AP2/EREBP and WRKY families were investigated. Embrapa 48 showed 770 more up-regulated genes than BR 16, in eight categories. In general, leaves presented more differentially expressed genes (DEGs) than roots. Embrapa 48 responded to water deficit faster than BR 16, presenting a greater number of DEGs since the first signs of drought. Embrapa 48 exhibited initial modulation of genes associated with stress, while maintaining the level of the ones related to basic functions. The genes expressed exclusively in the drought-tolerant cultivar, belonging to the category of dehydration responsive genes, and the ones with a contrasting expression pattern between the genotypes are examples of important candidates to confer tolerance to plants. Finally, this study identified genes of the AP2/EREBP and WRKY families related to drought tolerance.

2.
Plant Sci ; 221-222: 59-68, 2014 May.
Article in English | MEDLINE | ID: mdl-24656336

ABSTRACT

Drought is one of the most challenging agricultural issues limiting sustainable sugarcane production and, in some cases, yield losses caused by drought are nearly 50%. DREB proteins play vital regulatory roles in abiotic stress responses in plants. The transcription factor DREB2A interacts with a cis-acting DRE sequence to activate the expression of downstream genes that are involved in drought-, salt- and heat-stress response in Arabidopsis thaliana. In the present study, we evaluated the effects of stress-inducible over-expression of AtDREB2A CA on gene expression, leaf water potential (ΨL), relative water content (RWC), sucrose content and gas exchanges of sugarcane plants submitted to a four-days water deficit treatment in a rhizotron-grown root system. The plants were also phenotyped by scanning the roots and measuring morphological parameters of the shoot. The stress-inducible expression of AtDREB2A CA in transgenic sugarcane led to the up-regulation of genes involved in plant response to drought stress. The transgenic plants maintained higher RWC and ΨL over 4 days after withholding water and had higher photosynthetic rates until the 3rd day of water-deficit. Induced expression of AtDREB2A CA in sugarcane increased sucrose levels and improved bud sprouting of the transgenic plants. Our results indicate that induced expression of AtDREB2A CA in sugarcane enhanced its drought tolerance without biomass penalty.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Droughts , Gene Expression Regulation, Plant , Saccharum/genetics , Sucrose/metabolism , Transcription Factors/genetics , Arabidopsis Proteins/metabolism , Plant Transpiration , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Saccharum/metabolism , Transcription Factors/metabolism , Zea mays/genetics , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...