Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2807: 261-270, 2024.
Article in English | MEDLINE | ID: mdl-38743234

ABSTRACT

The development of 3D-organoid models has revolutionized the way diseases are studied. Recently, our brain organoid model has been shown to recapitulate in in vitro the human brain cytoarchitecture originally encountered in HIV-1 neuropathogenesis, allowing downstream applications. Infected monocytes, macrophages, and microglia are critically important immune cells for infection and dissemination of HIV-1 throughout brain during acute and chronic phase of the disease. Once in the brain parenchyma, long-lived infected monocytes/macrophages along with resident microglia contribute to the establishment of CNS latency in people with HIV (PWH). Hence, it is important to better understand how HIV-1 enters and establishes infection and latency in CNS to further develop cure strategies. Here we detailed an accessible protocol to incorporate monocytes (infected and/or labeled) as a model of transmigration of peripheral monocytes into brain organoids that can be applied to characterize HIV-1 neuroinvasion and virus dissemination.


Subject(s)
Brain , HIV Infections , HIV-1 , Monocytes , Organoids , Organoids/virology , Organoids/pathology , Humans , HIV-1/physiology , HIV-1/pathogenicity , Monocytes/virology , Monocytes/immunology , HIV Infections/virology , HIV Infections/immunology , HIV Infections/pathology , Brain/virology , Brain/pathology , Brain/immunology , Microglia/virology , Microglia/immunology , Microglia/pathology , Macrophages/virology , Macrophages/immunology , Virus Latency
2.
J Neuroinflammation ; 21(1): 107, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659061

ABSTRACT

Neuroinflammation and synaptodendritic damage represent the pathological hallmarks of HIV-1 associated cognitive disorders (HAND). The post-synaptic protein neurogranin (Nrgn) is significantly reduced in the frontal cortex of postmortem brains from people with HIV (PWH) and it is associated with inflammatory factors released by infected microglia/macrophages. However, the mechanism involved in synaptic loss have yet to be elucidated. In this study, we characterized a newly identified long non-coding RNA (lncRNA) transcript (RP11-677M14.2), which is antisense to the NRGN locus and is highly expressed in the frontal cortex of HIV-1 individuals. Further analysis indicates an inverse correlation between the expression of RP11-677M14.2 RNA and Nrgn mRNA. Additionally, the Nrgn-lncRNA axis is dysregulated in neurons exposed to HIV-1 infected microglia conditioned medium enriched with IL-1ß. Moreover, in vitro overexpression of this lncRNA impacts Nrgn expression at both mRNA and protein levels. Finally, we modeled the Nrgn-lncRNA dysregulation within an HIV-1-induced inflammatory environment using brain organoids, thereby corroborating our in vivo and in vitro findings. Together, our study implicates a plausible role for lncRNA RP11-677M14.2 in modulating Nrgn expression that might serve as the mechanistic link between Nrgn loss and cognitive dysfunction in HAND, thus shedding new light on the mechanisms underlying synaptodendritic damage.


Subject(s)
HIV-1 , Neurogranin , Neuroinflammatory Diseases , RNA, Long Noncoding , Humans , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Neurogranin/metabolism , Neurogranin/genetics , Neuroinflammatory Diseases/metabolism , HIV Infections/metabolism , HIV Infections/genetics , HIV Infections/pathology , Microglia/metabolism , Male , Animals
3.
Res Sq ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38260270

ABSTRACT

Neuroinflammation and synaptodendritic damage represent the pathological hallmarks of HIV-1 associated cognitive disorders (HAND). The post-synaptic protein neurogranin (Nrgn) is significantly reduced in the frontal cortex of postmortem brains from people with HIV (PWH) and it is associated with inflammatory factors released by infected microglia/macrophages. However, the mechanism involved in synaptic loss have yet to be elucidated. In this study, we characterized a newly identified long non-coding RNA (lncRNA) transcript (RP11-677M14.2), which is antisense to the NRGN locus and is highly expressed in the frontal cortex of HIV-1 individuals. Further analysis indicates an inverse correlation between the expression of RP11-677M14.2 RNA and Nrgn mRNA. Additionally, the Nrgn-lncRNA axis is dysregulated in neurons exposed to HIV-1 infected microglia conditioned medium enriched with IL-1b. Moreover, in vitro overexpression of this lncRNA impact Nrgn expression at both mRNA and protein levels. Finally, we modeled the Nrgn-lncRNA dysregulation within an HIV-1-induced neuroinflammatory environment using brain organoids, thereby corroborating our in vivo and in vitro findings. Together, our study implicates a plausible role for lncRNA RP11-677M14.2 in modulating Nrgn expression that might serve as the mechanistic link between Nrgn loss and cognitive dysfunction in HAND, thus shedding new light on the mechanisms underlying synaptodendritic damage.

4.
Methods Mol Biol ; 2610: 167-178, 2023.
Article in English | MEDLINE | ID: mdl-36534290

ABSTRACT

Studying neurological diseases have long been hampered by the lack of physiologically relevant models to resemble the complex human brain and the associated pathologies. Three-dimensional brain organoids have emerged as cutting-edge technology providing an alternative in vitro model to study healthy neural development and function as well as pathogenesis of neurological disorders and neuropathologies induced by pathogens. Nonetheless,  the absence of immune cells in current models poses a barrier to fully recapitulate brain microenvironment during the onset of HIV-1-associated neuropathogenesis. To address this and to further the brain organoid technology, we have incorporated HIV-target microglia into brain organoids, generating a complex multicellular interaction, which mimics the HIV-1-infected brain environment. Here we describe the method to generate a brain organoid consisting on neurons, astrocytes, and microglia (with and without HIV infection) that recapitulate the HIV-associated neuropathology. This model has tremendous potential to expand our knowledge on neuronal dysfunction associated with HIV-1 infection of glia.


Subject(s)
HIV Infections , HIV-1 , Nervous System Diseases , Humans , HIV Infections/pathology , Brain/pathology , Nervous System Diseases/pathology , Organoids/pathology
5.
Appetite ; 169: 105799, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34767841

ABSTRACT

While classically linked to memory, the hippocampus is also a feeding behavior modulator due to its multiple interconnected pathways with other brain regions and expression of receptors for metabolic hormones. Here we tested whether variations in insulin sensitivity would be correlated with differential brain activation following exposure to palatable food cues, as well as with variations in implicit food memory in a cohort of healthy adolescents, some of whom were born small for gestational age (SGA). Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was positively correlated with activation in the cuneus, and negatively correlated with activation in the middle frontal lobe, superior frontal gyrus and precuneus when presented with palatable food images versus non-food images in healthy adolescents. Additionally, HOMA-IR and insulinemia were higher in participants with impaired food memory. SGA individuals had higher snack caloric density and greater chance for impaired food memory. There was also an interaction between the HOMA-IR and birth weight ratio influencing external eating behavior. We suggest that diminished insulin sensitivity correlates with activation in visual attention areas and inactivation in inhibitory control areas in healthy adolescents. Insulin resistance also associated with less consistency in implicit memory for a consumed meal, which may suggest lower ability to establish a dietary pattern, and can contribute to obesity. Differences in feeding behavior in SGA individuals were associated with insulin sensitivity and hippocampal alterations, suggesting that cognition and hormonal regulation are important components involved in their food intake modifications throughout life.


Subject(s)
Insulin Resistance , Adolescent , Blood Glucose/metabolism , Brain/physiology , Cues , Gestational Age , Humans , Insulin , Meals , Obesity/complications
6.
Sci Rep ; 10(1): 15209, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938988

ABSTRACT

HIV-1 associated neurocognitive disorder (HAND) is characterized by neuroinflammation and glial activation that, together with the release of viral proteins, trigger a pathogenic cascade resulting in synaptodendritic damage and neurodegeneration that lead to cognitive impairment. However, the molecular events underlying HIV neuropathogenesis remain elusive, mainly due to lack of brain-representative experimental systems to study HIV-CNS pathology. To fill this gap, we developed a three-dimensional (3D) human brain organoid (hBORG) model containing major cell types important for HIV-1 neuropathogenesis; neurons and astrocytes along with incorporation of HIV-infected microglia. Both infected and uninfected microglia infiltrated into hBORGs resulting in a triculture system (MG-hBORG) that mirrors the multicellular network observed in HIV-infected human brain. Moreover, the MG-hBORG model supported productive viral infection and exhibited increased inflammatory response by HIV-infected MG-hBORGs, releasing tumor necrosis factor (TNF-α) and interleukin-1 (IL-1ß) and thereby mimicking the chronic neuroinflammatory environment observed in HIV-infected individuals. This model offers great promise for basic understanding of how HIV-1 infection alters the CNS compartment and induces pathological changes, paving the way for discovery of biomarkers and new therapeutic targets.


Subject(s)
Brain/cytology , HIV Infections/complications , HIV-1/pathogenicity , Neurocognitive Disorders/pathology , Organoids/cytology , Brain/metabolism , Brain/pathology , Brain/virology , Cell Differentiation , Culture Media/chemistry , HEK293 Cells , HIV Infections/metabolism , HIV Infections/pathology , Humans , Interleukin-1beta/metabolism , Models, Anatomic , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neural Stem Cells/virology , Neurocognitive Disorders/etiology , Neurocognitive Disorders/metabolism , Organ Culture Techniques , Organoids/metabolism , Organoids/pathology , Organoids/virology , Tumor Necrosis Factor-alpha/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...