Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-23679476

ABSTRACT

The imposition of a cost constraint for constructing the optimal navigation structure surely represents a crucial ingredient in the design and development of any realistic navigation network. Previous works have focused on optimal transport in small-world networks built from two-dimensional lattices by adding long-range connections with Manhattan length r(ij) taken from the distribution P(ij)~r(ij)(-α), where α is a variable exponent. It has been shown that, by introducing a cost constraint on the total length of the additional links, regardless of the strategy used by the traveler (independent of whether it is based on local or global knowledge of the network structure), the best transportation condition is obtained with an exponent α=d+1, where d is the dimension of the underlying lattice. Here we present further support, through a high-performance real-time algorithm, on the validity of this conjecture in three-dimensional regular as well as in two-dimensional critical percolation clusters. Our results clearly indicate that cost constraint in the navigation problem provides a proper theoretical framework to justify the evolving topologies of real complex network structures, as recently demonstrated for the networks of the US airports and the human brain activity.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(4 Pt 1): 040101, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20481663

ABSTRACT

We present a cluster growth process that provides a clear connection between equilibrium statistical mechanics and an explosive percolation model similar to the one recently proposed by D. Achlioptas [Science 323, 1453 (2009)]. We show that the following two ingredients are sufficient for obtaining an abrupt (first-order) transition in the fraction of the system occupied by the largest cluster: (i) the size of all growing clusters should be kept approximately the same, and (ii) the inclusion of merging bonds (i.e., bonds connecting vertices in different clusters) should dominate with respect to the redundant bonds (i.e., bonds connecting vertices in the same cluster). Moreover, in the extreme limit where only merging bonds are present, a complete enumeration scheme based on treelike graphs can be used to obtain an exact solution of our model that displays a first-order transition. Finally, the presented mechanism can be viewed as a generalization of standard percolation that discloses a family of models with potential application in growth and fragmentation processes of real network systems.

3.
Phys Rev Lett ; 104(1): 018701, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20366398

ABSTRACT

We investigate the navigation problem in lattices with long-range connections and subject to a cost constraint. Our network is built from a regular two-dimensional (d=2) square lattice to be improved by adding long-range connections (shortcuts) with probability P(ij) approximately r(ij)(-alpha), where r(ij) is the Manhattan distance between sites i and j, and alpha is a variable exponent. We introduce a cost constraint on the total length of the additional links and find optimal transport in the system for alpha=d+1 established here for d=1 and d=2. Remarkably, this condition remains optimal, regardless of the strategy used for navigation, being based on local or global knowledge of the network structure, in sharp contrast with the results obtained for unconstrained navigation using global or local information, where the optimal conditions are alpha=0 and alpha=d, respectively. The validity of our results is supported by data on the U.S. airport network.


Subject(s)
Transportation , Aircraft , Models, Biological , Time Factors , Transportation/economics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...