Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1618: 41-9, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26006109

ABSTRACT

Clinical evidence suggests that intrauterine growth restriction (IUGR) can cause persistent changes in the preference for palatable foods. In this study, we compared food preferences, the response to food rewards, and the role of the mesolimbic dopaminergic system in feeding behavior, between IUGR and control rats. Time-mated pregnant Sprague-Dawley rats were randomly allocated to a control group (standard chow ad libitum) or a 50% food restriction (FR) group, which received 50% of the control dams׳ habitual intake. These diets were provided from gestation day 10 to the 21st day of lactation. Within 24h of birth, pups were cross-fostered and divided into four groups: Adlib/Adlib, FR/Adlib, FR/FR, Adlib/FR. Standard chow consumption was compared between all groups. Food preferences, conditioned place preference to a palatable diet, and the levels of tyrosine hydroxylase (TH) phosphorylation and D2 receptors in the nucleus accumbens were analyzed and compared between the two groups of interest: Adlib/Adlib (control) and FR/Adlib (exposed to growth restriction during the fetal period only). IUGR adult rats had a stronger preference for palatable foods, but showed less conditioned place preference to a palatable diet than controls. D2 receptors levels were lower in IUGR rats. At baseline, TH and pTH levels were higher in FR/Adlib than control males. Measurements taken after exposure to sweet foods revealed higher levels of TH and pTH in FR/Adlib than control females. These data showed that IUGR rats exhibited a preference for palatable foods, potentially due to alterations in their mesolimbic reward pathway. Additionally, the changes observed in the mesolimbic dopaminergic system of IUGR rats proved to be sex-specific. This article is part of a Special Issue entitled 1618.


Subject(s)
Food Preferences/physiology , Food , Prenatal Nutritional Physiological Phenomena , Reward , Sex Characteristics , Analysis of Variance , Animals , Body Weight , Conditioning, Operant/physiology , Cues , Female , Food Deprivation , Male , Nucleus Accumbens/metabolism , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism , Tyrosine 3-Monooxygenase/metabolism
2.
Int J Dev Neurosci ; 40: 70-5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25450525

ABSTRACT

BACKGROUND/OBJECTIVES: Early handling alters adult behavioral responses to palatable food and to its withdrawal following a period of chronic exposure. However, the central mechanisms involved in this phenomenon are not known. Since neonatal handling has persistent effects on stress and anxiety responses, we hypothesized that its involvement in the aforementioned association may be associated with differential neuroadaptations in the amygdala during withdrawal periods. METHODS: Litters were randomized into two groups: handled (H, removed from their dam for 10min per day from the first to the tenth postnatal day and placed in an incubator at 32°C) and non-handled (NH). Experiment 1: on PNDs 80-100, females were assigned to receive palatable food+rat chow for 15 or 30 days, and these two groups were compared in terms of palatable food preference, body weight and abdominal fat deposition. In Experiment 2, H and NH rats were exposed to a chronic diet of palatable food+rat chow for 15 days, followed by (a) no withdrawal, (b) 24h withdrawal from palatable food (receiving only rat chow) or (c) 7-day withdrawal from palatable food (receiving only rat chow). Body weight, 10-min rebound palatable food intake, abdominal fat deposition, serum corticosterone as well as TH and pCREB levels in the amygdala were then compared between groups. RESULTS: Experiment 1-chronic exposure to palatable food induces comparable metabolic effects after 15 and 30 days. Experiment 2-neonatal handling is associated with a peculiar response to palatable food withdrawal following chronic exposure for 15 days. Rats exposed to early handling ingested less of this food after a 24h withdrawal period, and displayed increased amygdala TH and pCREB levels. CONCLUSIONS: Variations in the neonatal environment affect both behavioral responses and amygdala neuroadaptation to acute withdrawal from a palatable diet. These findings contribute to the comprehension of the mechanisms that link early life events and altered feeding behavior and related morbidities such as obesity in adulthood.


Subject(s)
Brain/metabolism , Environment , Food Preferences , Handling, Psychological , Stress, Psychological/nursing , Substance Withdrawal Syndrome/pathology , Analysis of Variance , Animals , Animals, Newborn , CREB-Binding Protein/metabolism , Disease Models, Animal , Eating/physiology , Feeding Behavior/physiology , Female , Male , Pregnancy , Rats , Rats, Wistar , Time Factors , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...