Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Invertebr Pathol ; 194: 107827, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36108793

ABSTRACT

Aedes aegypti transmits arbovirus, which is a public health concern. Certain filamentous fungi have the potential to control the disease. Here, the effects of Metarhizium anisopliae s.l. CG 153, Beauveria bassiana s.l. CG 206 and Schinus molle L. were investigated against Aedes aegypti larvae. In addition, the effect of essential oil on fungal development was analyzed. Fungal germination was assessed after combination with essential oil at 0.0025 %, 0.0075 %, 0.005 %, or 0.01 %; all of the oil concentrations affected germination except 0.0025 % (v/v). Larvae were exposed to 0.0025 %, 0.0075 %, 0.005 %, or 0.01 % of the essential oil or Tween 80 at 0.01 %; however, only the essential oil at 0.0025 % achieved similar results as the control. Larvae were exposed to fungi at 107 conidia mL-1 alone or in combination with the essential oil at 0.0025 %. Regardless of the combination, M. anisopliae reduced the median survival time of mosquitoes more than B. bassiana. The cumulative survival of mosquitoes exposed to M. anisopliae alone or in combination with essential oil was 7.5 % and 2 %, respectively, and for B. bassiana, it was 75 % and 71 %, respectively. M. anisopliae + essential oil had a synergistic effect against larvae, whereas B. bassiana + essential oil was antagonistic. Scanning and transmission electron microscopy, and histopathology confirmed that the interaction of M. anisopliae was through the gut and hemocoel. In contrast, the mosquito's gut was the main route for invasion by B. bassiana. Results from gas chromatography studies demonstrated sabinene and bicyclogermacrene as the main compounds of S. molle, and the in-silico investigation found evidence that both compounds affect a wide range of biological activity. For the first time, we demonstrated the potential of S. molle and its interaction with both fungal strains against A. aegypti larvae. Moreover, for the first time, we reported that S. molle might be responsible for significant changes in larval physiology. This study provides new insights into host-pathogen interplay and contributes to a better understanding of pathogenesis in mosquitoes, which have significant consequences for biological control strategies.


Subject(s)
Aedes , Anacardiaceae , Beauveria , Metarhizium , Oils, Volatile , Aedes/microbiology , Animals , Beauveria/physiology , Larva/microbiology , Metarhizium/physiology , Oils, Volatile/pharmacology , Pest Control, Biological/methods , Polysorbates/pharmacology
2.
Acta Trop ; 213: 105732, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33188750

ABSTRACT

Blastospores or conidia (formulated or not) of entomopathogenic fungi were assessed against Aedes aegypti larvae. Larvae (L2) were exposed to 105, 106, 107, and 108 propagules mL-1 water suspension. Mineral oil at 0.1%, 0.5%, or 1.0% (v/v) was employed to observe the effect on larval survival. The 0.1% mineral oil did not affect larval survival. Accordingly, 107 propagules mL-1 and 0.1% mineral oil were used to prepare all fungal emulsions. The fungal suspension or formulation was prepared as follows: 107 propagules mL-1 on 0.03% TweenⓇ 80 (v/v) aqueous solution or 107 propagules mL-1 on 0.03% TweenⓇ 80 plus 0.1% mineral oil; larval survival rates were evaluated for 7 days, and median survival time (S50) was also determined. The presence of fungi in larvae was examined both histologically and by scanning electron microscopy 24 h or 48 h after exposure. To evaluate the larval growth, larvae were exposed to 107 propagules mL-1 for 48 hours and their length measured using a digital caliper. Here, propagules had similar results in reducing the larvae survival rate and time. The treatment with Beauveria bassiana s.l. at 108 propagules mL-1 or with Metarhizium anisopliae s.l. at 108 blastopores mL-1 reduced the larval survival time to two days. M. anisopliae s.l. at 108 conidia mL-1 reduced the survival time to three days. The survival time of larvae submitted to the other treatments ranged from 6 days to over 7 days. M. anisopliae s.l. or B. bassiana s.l. oil-in-water emulsions at 107 propagules mL-1 yielded better results than the water suspensions, the larvae survival rate was 2 days for both propagules in oil-in-water emulsion. Larvae exposed to blastospores from both isolates or M. anisopliae conidia were longer than in the other treatments. Scanning electron microscopy and histology analyzes found fungi predominantly in the gut, mouthparts, and perispiracular lobes of larvae. Formulated fungus yielded better results than the aqueous suspensions for control of mosquito larvae. Thus, for the first time, the effect of mineral oil on the fungal interaction on A. aegypti larvae was observed as well as the effect of entomopathogenic fungi in the growth of larvae, supporting the search for strategies to control this arthropod.


Subject(s)
Aedes/microbiology , Beauveria , Metarhizium , Pest Control, Biological , Aedes/growth & development , Aedes/ultrastructure , Animals , Beauveria/physiology , Host Microbial Interactions , Larva/growth & development , Larva/microbiology , Larva/ultrastructure , Metarhizium/physiology , Microscopy, Electron, Scanning , Mineral Oil , Spores, Fungal/physiology
3.
Parasit Vectors ; 7: 172, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24713267

ABSTRACT

BACKGROUND: The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. METHODS: Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. RESULTS: The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations ≥ 30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. CONCLUSION: The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti.


Subject(s)
Aedes/drug effects , Benzofurans/pharmacology , Insecticides/pharmacology , Animals , Benzofurans/administration & dosage , Benzofurans/adverse effects , Benzofurans/chemistry , Cells, Cultured , Dengue/prevention & control , Dose-Response Relationship, Drug , Insect Vectors/drug effects , Insecticides/administration & dosage , Insecticides/adverse effects , Insecticides/chemistry , Larva , Macrophages, Peritoneal/drug effects , Mice , Mice, Inbred BALB C , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...