Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Med ; 18(5): 377-387, 2023 05.
Article in English | MEDLINE | ID: mdl-37125511

ABSTRACT

Aim: We evaluated the bone repair induced by MSCs from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs) injected into rat calvarial defects at two time points. Methods & results: Both cell populations expressed MSC surface markers and differentiated into adipocytes and osteoblasts. µCT showed that the combination of cells from distinct sources exhibited synergistic effects to increase bone repair with an advantage when BM-MSCs were injected prior to AT-MSCs. The higher osteogenic potential of these MSC combinations was demonstrated using an in vitro coculture system where BM-MSCs and AT-MSCs association induced higher ALP activity in MC3T3-E1 cells. Conclusion: Our findings may drive new approaches to treat bone defects and shed light on the complexity of the mechanisms involved in bone regeneration.


We evaluated the bone repair induced by cells that can develop into different types of cells (stem cells) derived from fat and spongy tissue inside the large bones and injected into defects created in rat skulls. Cells derived from both tissues developed into fat cells and bone-forming cells. The combination of cells from fat and spongy tissue exhibited cooperative effects to increase bone repair with an advantage when cells from spongy tissue were injected prior to cells from fat. Our findings may contribute to stablish new therapies based on the use of cells to treat large bone defects.


Subject(s)
Bone Marrow , Mesenchymal Stem Cells , Rats , Animals , Adipose Tissue , Osteogenesis , Bone Regeneration , Cell Differentiation , Bone Marrow Cells , Cells, Cultured
2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982406

ABSTRACT

Medulloblastomas are the most common solid tumors in children, accounting for 8-30% of pediatric brain cancers. It is a high-grade tumor with aggressive behavior and a typically b poor prognosis. Its treatment includes surgery, chemotherapy, and radiotherapy, and presents high morbidity. Significant clinical, genetic, and prognostic differences exist between its four molecular subgroups: WNT, SHH, Group 3, and Group 4. Many studies seek to develop new chemotherapeutic agents for medulloblastomas through the identification of genes whose expressions are new molecular targets for drugs, such as membrane receptors associated with cell replication. This study aimed to assess the association of CD114 expression with mortality in patients with medulloblastoma. Databases from the Medulloblastoma Advanced Genomics International Consortium (MAGIC) were analyzed, focusing on the expression of the CD114 membrane receptor in different molecular types and its possible association with mortality. Our findings showed different CD114 expressions between Group 3 and other molecular groups, as well as between the molecular subtypes SHH γ and Group 3 α and Group 3 ß. There was no statistically significant difference between the other groups and subtypes. Regarding mortality, this study did not find statistical significance in the association between low and high CD114 expressions and mortality. Medulloblastoma is a heterogeneous disease with many subtype variations of its genetic and intracellular signaling pathways. Similarly to this study, which could not demonstrate different CD114 membrane receptor expression patterns between groups, others who sought to associate CD114 expression with mortality in other types of cancer failed to establish a direct association. Since many indications point to the relation of this gene with cancer stem cells (CSCs), it may be part of a more extensive cellular signaling pathway with an eventual association with tumor recurrence. This study found no direct relationship between CD114 expression and mortality in patients with medulloblastoma. Further studies are needed on the intracellular signaling pathways associated with this receptor and its gene (the CSF3R).


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Medulloblastoma/metabolism , Cerebellar Neoplasms/metabolism , Neoplasm Recurrence, Local , Signal Transduction , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...