Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Lett ; 362(11)2015 Jun.
Article in English | MEDLINE | ID: mdl-25926529

ABSTRACT

In order to explore the abundance and potential environmental functions of green algal laccases, we screened various algae for extracellular laccase-like activities, characterized basic features of these activities in selected species and exemplarily studied the transformation of environmental pollutants and complex natural compounds by the laccase of Tetracystis aeria. Oxidation of the classical laccase substrate ABTS was found to be widespread in chlorophycean algae. The oxidation activity detected in members of the 'Scenedesmus' clade was caused by an unknown thermostable low-molecular-mass compound. In contrast, species of the Moewusinia, including Chlamydomonas moewusii and T. aeria, excreted putative 'true' laccases. Phenolic substrates were oxidized by these enzymes optimally at neutral to alkaline pH. The Tetracystis laccase efficiently transformed bisphenol A, 17α-ethinylestradiol, nonylphenol and triclosan in the presence of ABTS as redox mediator, while anthracene, veratrylalcohol and adlerol were not attacked. Lignosulfonate and humic acid underwent slight (de)polymerization reactions in the presence of the laccase and mediator(s), probably involving the oxidation of phenolic constituents. Possible natural functions of the enzymes, such as the synthesis of complex polymers or detoxification processes, may assist the survival of the algae in adverse environments. In contaminated surface waters, laccase-producing green algae might contribute to the environmental breakdown of phenolic pollutants.


Subject(s)
Chlorophyta/enzymology , Environmental Pollutants/metabolism , Laccase/metabolism , Phenols/metabolism , Anthracenes/metabolism , Benzhydryl Compounds/metabolism , Chlorophyta/classification , Chlorophyta/metabolism , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Phylogeny , Substrate Specificity , Triclosan/metabolism
2.
Environ Microbiol ; 13(2): 350-64, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20874732

ABSTRACT

Symbiosis of green algae with protozoa and invertebrates has been studied for more than 100 years. Endosymbiotic green algae are widely distributed in ciliates (e.g. Paramecium, Stentor, Climacostomum, Coleps, Euplotes), heliozoa (e.g. Acanthocystis) and invertebrates (e.g. Hydra, Spongilla), and have traditionally been identified as named or unnamed species of Chlorella Beij. or Zoochlorella K. Brandt or referred to as Chlorella-like algae or zoochlorellae. We studied 17 strains of endosymbionts isolated from various hosts and geographical localities using an integrative approach (nuclear encoded small subunit and internal transcribed spacer regions of rRNA gene sequences including their secondary structures, morphology, physiology and virus sensitivity). Phylogenetic analyses have revealed them to be polyphyletic. The strains examined belong to five independent clades within the Trebouxiophyceae (Choricystis-, Elliptochloris-, Auxenochlorella- and Chlorella-clades) and Chlorophyceae (Scenedesmus-clade). The most studied host organism, Paramecium bursaria, harbours endosymbionts representing at least five different species. On the basis of our results, we propose a taxonomic revision of endosymbiotic 'Chlorella'-like green algae. Zoochlorella conductrix K. Brandt is transferred to Micractinium Fresen. and Zoochlorella parasitica K. Brandt to Choricystis (Skuja) Fott. It was shown that Choricystis minor (Skuja) Fott, the generitype, is a later heterotypic synonym of Choricystis parasitica (K. Brandt) comb. nov. A new species, Chlorella heliozoae, is proposed to accommodate the endosymbiont of Acanthocystis turfacea.


Subject(s)
Chlorella/classification , Chlorella/genetics , Phylogeny , Base Sequence , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Genes, rRNA , Nucleic Acid Conformation , Paramecium/microbiology , Symbiosis
3.
Arch Microbiol ; 192(9): 759-68, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20623267

ABSTRACT

Laccases (EC 1.10.3.2) are versatile multi-copper oxidases so far found in higher plants, fungi, insects, prokaryotes and lichens. In the present study, the production of an extracellular laccase-like enzyme by the coccoid green soil alga Tetracystis aeria was investigated and the enzyme was partly characterized, thereby providing the first description of a laccase-like enzyme in soil algae. Enzyme production in algae cultures was considerably increased by addition of the fungal laccase inducer copper sulphate. Maximal enzyme production was observed during the stationary growth phase. Peroxidase or tyrosinase activity was not detected. The native enzyme exhibits an apparent molecular mass of about 212 kDa as observed with size exclusion chromatography and about 210-260 kDa as estimated by zymograms. The enzyme efficiently oxidizes 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), syringaldazine (SGZ) and the anthraquinone dye Acid Blue 62, while guaiacol and Remazol Brilliant Blue R are only poorly oxidized. The apparent kinetic parameters obtained for ABTS, 2,6-DMP and SGZ oxidation are within the range reported for fungal laccases. Oxidation of the phenolic substrate 2,6-DMP displays a remarkably high pH optimum (pH 8.0-8.5), which is interesting with respect to potential biotechnological applications.


Subject(s)
Algal Proteins/isolation & purification , Chlorophyta/enzymology , Laccase/isolation & purification , Soil , Algal Proteins/metabolism , Biodegradation, Environmental , Hydrogen-Ion Concentration , Laccase/metabolism , Molecular Weight , Oxidation-Reduction , Phenols/metabolism
4.
Microb Ecol ; 57(2): 229-47, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18850242

ABSTRACT

Biological soil crusts (BSCs) are found in all dryland regions of the world, including the polar regions. They are also known to occur in the southern African region. Although there were a number of case studies on BSCs from that region, we did not know if they are a normal part of the vegetation cover or just a phenomenon that occasionally occurs here and there. In order to investigate diversity, distribution patterns, and the driving factors of both, we followed a random sampling system of observatories along a transect, stretching from the Namibian-Angolan border down south to the Cape Peninsula, covering seven different major biomes. Biological soil crusts were found to occur in six out of seven biomes. Despite the fact that soil-dwelling algae occurred in the Fynbos biome, crust formation was not observed for hitherto unknown reasons. Seven BSC types were distinguished on the basis of morphology and taxonomic composition: three of them were cyanobacteria-dominated, one with additional chlorolichens, two with bryophytes, one hypolithic type restricted to quartz gravel pavements, and the unique lichen fields of the Namib Desert. Besides 29 green algal species in 21 genera, one heterokont alga, 12 cyanolichens, 14 chlorolichens, two genera of liverworts, and three genera of mosses, these crusts are positioned among the most diverse BSCs worldwide mainly because of the unusual high cyanobacterial species richness comprising 58 species in 21 genera. They contribute considerably to the biodiversity of arid and semi-arid bioregions. Taxonomic diversity of cyanobacteria was significantly higher in the winter rain zone than in the summer rain zone (54 versus 32 species). The soil photosynthetic biomass (chlorophylla/m2), the carbon content of the soil and the number of BSC types were significantly higher in the winter rain zone (U27, 29=215.0, p=0.004 [chla]; U21, 21=135.0, p=0.031 [C]; U27, 29=261.5, p=0.028 [BSC types]; excluding the fog-dominated Namib biome). The winter rain zone is characterized by a lower precipitation amount, but a higher rain frequency with the number of rainy days more evenly distributed over the year. The dry period is significantly shorter per year in the winter rain zone (U8, 9=5.0, p=0.003). We conclude that rain frequency and duration of dry periods rather than the precipitation amount is the main factor for BSC growth and succession. Nitrogen content of the soils along the transect was generally very low and correlated with soil carbon content. There was a weak trend that an increasing proportion of silt and clay (<0.63 mm) in the soil is associated with higher values of BSC chlorophyll content (Pearson correlation coefficient=0.314, p=0.237). Furthermore, we found a significant positive correlation between silt and clay and the number of BSC types (Pearson correlation coefficient=0.519, p=0.039), suggesting that fine grain-size promotes BSC succession and their biomass content. Lichens and bryophytes occurred in BSCs with lower disturbance frequencies (e.g. trampling) only. Crust thickness and chlorophyll content increased significantly from crusts of the early successional type to the late successional crust types. From our results, we conclude that BSCs are a normal and frequent element of the vegetation in arid and semi-arid southwestern Africa, and that rain frequency and duration of dry periods rather than the precipitation amount are the key factors for the development, differentiation and composition of BSCs.


Subject(s)
Biodiversity , Rain , Soil Microbiology , Biomass , Carbon/analysis , Chlorophyll/analysis , Climate , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Lichens/genetics , Lichens/isolation & purification , Namibia , Nitrogen/analysis , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Seasons
5.
Chemosphere ; 56(3): 305-13, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15172603

ABSTRACT

Uptake and metabolisation of arsenic as a function of both the plant type and the chemical form of arsenic were examined. For this purpose two different plant species (Silene vulgaris and Plantago major) were selected that differed in their vitality and accumulation behaviour on arsenic-loaded substrates. The plants were cultivated on soil and irrigated with aqueous solutions of an inorganic arsenic compound (arsenious acid) and an organic compound (dimethylarsinate). The arsenic species accumulated in the parts of the plants above ground were extracted by PLE and determined using IC-ICP-MS. The concentrations and metabolisation products of arsenic found in the extracts indicate different mechanisms of arsenic uptake and transformation in both angiosperms. The arsenic species pattern showed that S. vulgaris was more arsenic--tolerable than P. major which is attributed to a low arsenate to arsenite concentration ratio in the plant compartments. S. vulgaris was also able to demethylate and reduce dimethylarsinate to form arsenite in a high extent. P. major accumulated only eight times lower concentration of arsenic, and the arsenate to arsenite concentration ratio shifted to higher values. Metabolisation products of dimethylarsinate did not occur under the present experimental conditions. The vitality of the angiosperms seems to be very dependent on the ability of the plant to reduce arsenate to arsenite.


Subject(s)
Magnoliopsida/metabolism , Arsenates/metabolism , Arsenites/metabolism , Mass Spectrometry , Plant Leaves/metabolism , Plant Stems/metabolism , Plantago/growth & development , Plantago/metabolism , Soil/analysis , Soil Pollutants/analysis , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...