Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 22(7): 1428-35, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11379967

ABSTRACT

A screening procedure for protein-protein interactions in cellular extracts using a green fluorescent protein (GFP) and affinity capillary electrophoresis (ACE) was established. GFP was fused as a fluorescent indicator to the C-terminus of a cyclophilin (rDmCyp20) from Drosophila melanogaster. Cyclophilins (Cyps) belong to the ubiquitously distributed enzyme family of peptidyl-prolyl cis/trans isomerases (PPlases) and are well known as cellular targets of the immunosuppressive drug cyclosporin A (CsA). The PPlase activity of the GFP fused rDmCyp20 as well as the high affinity to CsA remain intact. Using native gel electrophoresis and ACE mobility-shift assays, it was demonstrated that the known moderate affinity of Cyp20 to the capsid protein p24 of HIV-1 was detectable in the case of rDmCyp20 fused to the fluorescent tag. For the p24 / rDmCyp20-GFP binding an ACE method was established which allowed to determine a dissociation constant of Kd = 20+/-1.5 x 10(-6) M. This result was verified by size-exclusion chromatography and is in good agreement with published data for the nonfused protein. Moreover the fusion protein was utilized to screen rDmCyp20-protein interactions by capillary electrophoresis in biological matrices. A putative ligand of rDmCyp20 in crude extracts of embryonic D. melanogaster was discovered by mobility-shift assays using native gel electrophoresis with fluorescence imaging and ACE with laser-induced fluorescence detection. The approach seems applicable to a wide range of proteins and offers new opportunities to screen for moderate protein-protein interactions in biological samples.


Subject(s)
Electrophoresis, Capillary/methods , Proteins/analysis , Green Fluorescent Proteins , Luminescent Proteins , Protein Binding
2.
J Bacteriol ; 181(22): 6876-81, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10559151

ABSTRACT

The Czc system of Ralstonia sp. strain CH34 mediates resistance to cobalt, zinc, and cadmium through ion efflux catalyzed by the CzcCB(2)A cation-proton antiporter. The CzcD protein is involved in the regulation of the Czc system. It is a membrane-bound protein with at least four transmembrane alpha-helices and is a member of a subfamily of the cation diffusion facilitator (CDF) protein family, which occurs in all three domains of life. The deletion of czcD in a Ralstonia sp. led to partially constitutive expression of the Czc system due to an increased transcription of the structural czcCBA genes, both in the absence and presence of inducers. The czcD deletion could be fully complemented in trans by CzcD and two other CDF proteins from Saccharomyces cerevisiae, ZRC1p and COT1p. All three proteins mediated a small but significant resistance to cobalt, zinc, and cadmium in Ralstonia, and this resistance was based on a reduced accumulation of the cations. Thus, CzcD appeared to repress the Czc system by an export of the inducing cations.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Cupriavidus necator/drug effects , Gene Expression Regulation, Bacterial , Metals, Heavy/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Cupriavidus necator/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial , Metals, Heavy/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...