Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 111(3): 036803, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23909351

ABSTRACT

Water confined on the scale of 20 Å, is known to have different transport and thermodynamic properties from that of bulk water, and the proton momentum distribution has recently been shown to have qualitatively different properties from that exhibited in bulk water. The electronic ground state of nanoconfined water must be responsible for these anomalies but has so far not been investigated. We show here for the first time, using x-ray Compton scattering and a computational model, that the ground state configuration of the valence electrons in a particular nanoconfined water system, Nafion, is so different from that of bulk water that the weakly electrostatically interacting molecule model of water is clearly inapplicable. We argue that this is a generic property of nanoconfinement. The present results demonstrate that the electrons, and hence the protons as well, of nanoconfined water are in a distinctly different quantum state from that of bulk water. Biological cell function must make use of the properties of this state and cannot be expected to be described correctly by empirical models based on the weakly interacting molecules model.

2.
J Chem Phys ; 135(14): 144502, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22010722

ABSTRACT

Water is often viewed as a collection of monomers interacting electrostatically with each other. We compare the water proton momentum distributions from recent neutron scattering data with those calculated from two electronic structure-based models. We find that below 500 K these electrostatic models, one based on a multipole expansion, which includes the polarizability of the monomers, are not able to even qualitatively account for the sizable vibrational zero-point contribution to the enthalpy of vaporization. This discrepancy is evidence that the change in the proton well upon solvation cannot be entirely explained by electrostatic effects alone, but requires correlations of the electronic states on the molecules involved in the hydrogen bonds to produce the observed softening of the well.


Subject(s)
Protons , Water/chemistry , Computer Simulation , Hydrogen Bonding , Models, Chemical , Static Electricity
3.
Phys Rev Lett ; 105(14): 148101, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-21230870

ABSTRACT

The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6 water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Å.


Subject(s)
DNA, A-Form/chemistry , DNA, A-Form/metabolism , Protons , Water/metabolism , Absorption , Animals , DNA/chemistry , Models, Molecular , Nucleic Acid Conformation , Thermodynamics , Water/chemistry
4.
J Chem Phys ; 128(15): 154519, 2008 Apr 21.
Article in English | MEDLINE | ID: mdl-18433247

ABSTRACT

We present an empirical flexible and polarizable water model which gives an improved description of the position, momentum, and dynamical (spectroscopic) distributions of H nuclei in water. We use path integral molecular dynamics techniques in order to obtain momentum and position distributions and an approximate solution to the Schrodinger equation to obtain the infrared (IR) spectrum. We show that when the calculated distributions are compared to experiment the existing empirical models tend to overestimate the stiffness of the H nuclei involved in H bonds. Also, these models vastly underestimate the enormous increase in the integrated IR intensity observed in the bulk over the gas-phase value. We demonstrate that the over-rigidity of the OH stretch and the underestimation of intensity are connected to the failure of existing models to reproduce the correct monomer polarizability surface. A new model, TTM4-F, is parametrized against electronic structure results in order to better reproduce the polarizability surface. It is found that TTM4-F gives a superior description of the observed spectroscopy, showing both the correct redshift and a much improved intensity. TTM4-F also has a somewhat improved dielectric constant and OH distribution function. It also gives an improved match to the experimental momentum distribution, although some discrepancies remain.


Subject(s)
Models, Chemical , Models, Molecular , Protons , Vibration , Water/chemistry , Computer Simulation , Electromagnetic Fields , Ice
5.
J Chem Phys ; 127(15): 154501, 2007 Oct 21.
Article in English | MEDLINE | ID: mdl-17949167

ABSTRACT

Deep inelastic neutron scattering measurements of water confined in nanoporous xerogel powders, with average pore diameters of 24 and 82 A, have been carried out for pore fillings ranging from 76% to nearly full coverage. DINS measurements provide direct information on the momentum distribution n(p) of protons, probing the local structure of the molecular system. The observed scattering is interpreted within the framework of the impulse approximation and the longitudinal momentum distribution determined using a model independent approach. The results show that the proton momentum distribution is highly non-Gaussian. A bimodal distribution appears in the 24 A pore, indicating coherent motion of the proton over distances d of approximately 0.3 A. The proton mean kinetic energy W of the confined water molecule is determined from the second moment of n(p). The W values, higher than in bulk water, are ascribed to changes of the proton dynamics induced by the interaction between interfacial water and the confining surface.

6.
Phys Rev Lett ; 97(14): 145501, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-17155266

ABSTRACT

The hydrogen-bond network formed from a crystalline solution of ferroelectric RbH2PO4 and antiferroelectric NH4H2PO4 demonstrates glassy behavior, with proton tunneling the dominant mechanism for relaxation at low temperature. We characterize the dielectric response over seven decades of frequency and quantitatively fit the long-time relaxation by directly measuring the local potential energy landscape via neutron Compton scattering. The collective motion of protons rearranges the hydrogen bonds in the network. By analogy with vortex tunneling in superconductors, we relate the logarithmic decay of the polarization to the quantum-mechanical action.

7.
Phys Chem Chem Phys ; 8(34): 3966-77, 2006 Sep 14.
Article in English | MEDLINE | ID: mdl-17028687

ABSTRACT

Recent measurements of the momentum distribution in water and ice have shown that the proton is in a considerably softer potential in ice Ih than in water or the free monomer. This is broadly consistent with the large red shift observed in the vibrational spectrum. We show that existing water models, which treat the intramolecular potential as unchanged by the hydrogen bonding are unable to reproduce the momentum distribution. In addition, even if they can substantially explain the red shift they are unable to explain the large increase in intensity observed in the infrared spectrum in going from the monomer to ice Ih. We show that the inclusion of a bond dipole derivative term is essential to explain the observed intensities in the infrared spectrum. Though this term is partially responsible for the softening of the effective potential of the proton we show that best agreement with the observed momentum distribution requires a further softening of the harmonic component of the intramolecular potential. We introduce an efficient normal-mode molecular dynamics algorithm for calculating the momentum distribution with path-integrals.

8.
Phys Rev Lett ; 89(13): 135505, 2002 Sep 23.
Article in English | MEDLINE | ID: mdl-12225037

ABSTRACT

Neutron Compton scattering measurements presented here of the momentum distribution of hydrogen in KH2PO4 just above and well below the ferroelectric transition temperature are sufficiently sensitive to show clearly that the proton is coherent over both sites in the high temperature phase, a result that invalidates the commonly accepted order-disorder picture of the transition. The Born-Oppenheimer potential for the hydrogen, extracted directly from data for the first time, is consistent with neutron dif-fraction data, and the vibrational spectrum is in substantial agreement with infrared absorption measurements. The measurements are sensitive enough to detect the effect of surrounding ligands on the hydrogen bond, and can be used to study the systematic effect of the variation of these ligands in other hydrogen bonded systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...