Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
React Chem Eng ; 9(3): 713-727, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38433980

ABSTRACT

Biocatalysis has gained increasing importance as an eco-friendly alternative for the production of bulk and fine chemicals. Within this paradigm, Baeyer Villiger monoxygenases (BVMOs) serve as enzymatic catalysts that provide a safe and sustainable route to the conventional synthesis of lactones, such as caprolactone, which is employed for the production of polycaprolactone (PCL), a biocompatible polymer for medicinal applications. In this work, we present a three-step, semi-continuous production of PCL using an entirely biocatalytic process, highlighting the merits of continuous manufacturing for enhancing biocatalysis. First, caprolactone is produced in batch from cyclohexanol using a coenzymatic cascade involving an alcohol dehydrogenase (ADH) and BVMO. Different process parameters and aeration modes were explored to optimize the cascade's productivity. Secondly, the continuous extraction of caprolactone into an organic solvent, needed for the polymerization step, was optimized. 3D-printed mixers were applied to enhance the mass transfer between the organic and the aqueous phases. Lastly, we investigated the ring-opening polymerization of caprolactone to PCL catalyzed by Candida antarctica lipase B (CAL-B), with a focus on eco-friendly solvents like cyclopentyl-methyl-ether (CPME). Space-time-yields up to 58.5 g L-1 h-1 were achieved with our overall setup. By optimizing the individual process steps, we present an efficient and sustainable pathway for PCL production.

2.
Angew Chem Int Ed Engl ; 63(12): e202319457, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38235524

ABSTRACT

Enzymes and peptide catalysts consist of the same building blocks but require vastly different environments to operate best. Herein, we show that an enzyme and a peptide catalyst can work together in a single reaction vessel to catalyze a two-step cascade reaction with high chemo- and stereoselectivity. Abundant linear alcohols, nitroolefins, an alcohol oxidase, and a tripeptide catalyst provided chiral γ-nitroaldehydes in aqueous buffer. High yields (up to 92 %) and stereoselectivities (up to 98 % ee) were achieved for the cascade through the rational design of the peptide catalyst and the identification of common reaction conditions.


Subject(s)
Alcohols , Peptides , Stereoisomerism , Catalysis
3.
Commun Chem ; 6(1): 217, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828252

ABSTRACT

Hydrogen transfer biocatalysts to prepare optically pure alcohols are in need, especially when it comes to sterically demanding ketones, whereof the bioreduced products are either essential precursors of pharmaceutically relevant compounds or constitute APIs themselves. In this study, we report on the biocatalytic potential of an anti-Prelog (R)-specific Lactobacillus kefir ADH variant (Lk-ADH-E145F-F147L-Y190C, named Lk-ADH Prince) employed as E. coli/ADH whole-cell biocatalyst and its characterization for stereoselective reduction of prochiral carbonyl substrates. Key enzymatic reaction parameters, including the reaction medium, evaluation of cofactor-dependency, organic co-solvent tolerance, and substrate loading, were determined employing the drug pentoxifylline as a model prochiral ketone. Furthermore, to tap the substrate scope of Lk-ADH Prince in hydrogen transfer reactions, a broad range of 34 carbonylic derivatives was screened. Our data demonstrate that E. coli/Lk-ADH Prince exhibits activity toward a variety of structurally different ketones, furnishing optically active alcohol products at the high conversion of 65-99.9% and in moderate-to-high isolated yields (38-91%) with excellent anti-Prelog (R)-stereoselectivity (up to >99% ee) at substrate concentrations up to 100 mM.

4.
J Org Chem ; 88(15): 11045-11055, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37467462

ABSTRACT

We report on novel chemoenzymatic routes toward tenofovir using low-cost starting materials and commercial or homemade enzyme preparations as biocatalysts. The biocatalytic key step was accomplished either via stereoselective reduction using an alcohol dehydrogenase or via kinetic resolution using a lipase. By employing a suspension of immobilized lipase from Burkholderia cepacia (Amano PS-IM) in a mixture of vinyl acetate and toluene, the desired (R)-ester (99% ee) was obtained on a 500 mg scale (60 mM) in 47% yield. Alternatively, stereoselective reduction of 1-(6-chloro-9H-purin-9-yl) propan-2-one (84 mg, 100 mM) catalyzed by lyophilized E. coli cells harboring recombinant alcohol dehydrogenase (ADH) from Lactobacillus kefir (E. coli/Lk-ADH Prince) allowed one to reach quantitative conversion, 86% yield and excellent optical purity (>99% ee) of the corresponding (R)-alcohol. The key (R)-intermediate was transformed into tenofovir through "one-pot" aminolysis-hydrolysis of (R)-acetate in NH3-saturated methanol, alkylation of the resulting (R)-alcohol with tosylated diethyl(hydroxymethyl) phosphonate, and bromotrimethylsilane (TMSBr)-mediated cleavage of the formed phosphonate ester into the free phosphonic acid. The elaborated enzymatic strategy could be applicable in the asymmetric synthesis of tenofovir prodrug derivatives, including 5'-disoproxil fumarate (TDF, Viread) and 5'-alafenamide (TAF, Vemlidy). The molecular basis of the stereoselectivity of the employed ADHs was revealed by molecular docking studies.


Subject(s)
Anti-HIV Agents , Organophosphonates , Tenofovir , Alcohol Dehydrogenase , Escherichia coli , Molecular Docking Simulation , Alanine , Lipase
5.
Chembiochem ; 24(9): e202300146, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36940139

ABSTRACT

The formal asymmetric and stereodivergent enzymatic reduction of α-angelica lactone to both enantiomers of γ-valerolactone was achieved in a one-pot cascade by uniting the promiscuous stereoselective isomerization activity of Old Yellow Enzymes with their native reductase activity. In addition to running the cascade with one enzyme for each catalytic step, a bifunctional isomerase-reductase biocatalyst was designed by fusing two Old Yellow Enzymes, thereby generating an unprecedented case of an artificial enzyme catalyzing the reduction of nonactivated C=C bonds to access (R)-valerolactone in overall 41 % conversion and up to 91 % ee. The enzyme BfOYE4 could be used as single biocatalyst for both steps and delivered (S)-valerolactone in up to 84 % ee and 41 % overall conversion. The reducing equivalents were provided by a nicotinamide recycling system based on formate and formate dehydrogenase, added in a second step. This enzymatic system provides an asymmetric route to valuable chiral building blocks from an abundant bio-based chemical.


Subject(s)
4-Butyrolactone , Lactones , Oxidoreductases/metabolism , Biocatalysis
6.
RSC Adv ; 12(34): 22150-22160, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36043081

ABSTRACT

Efficient chemoenzymatic routes toward the synthesis of both enantiomers of adrenergic ß-blockers were accomplished by identifying a central chiral building block, which was first prepared using lipase-catalyzed kinetic resolution (KR, Amano PS-IM) as the asymmetric step at a five gram-scale (209 mM conc.). The enantiopure (R)-chlorohydrin (>99% ee) subsequently obtained was used for the synthesis of a series of model (R)-(+)-ß-blockers (i.e., propranolol, alprenolol, pindolol, carazolol, moprolol, and metoprolol), which were produced with enantiomeric excess in the range of 96-99.9%. The pharmaceutically relevant (S)-counterpart, taking propranolol as a model, was synthesized in excellent enantiomeric purity (99% ee) via acetolysis of the respective enantiomerically pure (R)-mesylate by using cesium acetate and a catalytic amount of 18-Crown-6, followed by acidic hydrolysis of the formed (S)-acetate. Alternatively, asymmetric reduction of a prochiral ketone, namely 2-(3-chloro-2-oxopropyl)-1H-isoindole-1,3(2H)-dione, was performed using lyophilized E. coli cells harboring overexpressed recombinant alcohol dehydrogenase from Lactobacillus kefir (E. coli/Lk-ADH-Lica) giving the corresponding chlorohydrin with >99% ee. Setting the stereocenter early in the synthesis and performing a 4-step reaction sequence in a 'one-pot two-step' procedure allowed the design of a 'step-economic' route with a potential dramatic improvement in process efficiency. The synthetic method can serve for the preparation of a broad scope of enantiomerically enriched ß-blockers, the chemical structures of which rely on the common α-hydroxy-N-isopropylamine moiety, and in this sense, might be industrially attractive.

7.
Bioorg Chem ; 127: 105967, 2022 10.
Article in English | MEDLINE | ID: mdl-35777234

ABSTRACT

Alcohol dehydrogenases (ADHs; EC 1.1.1.1) have been widely used for the reversible redox reactions of carbonyl compounds (i.e., aldehydes and ketones) and primary or secondary alcohols, often resulting in optically pure hydroxyl products with high added value. In this work, we report a concise chemoenzymatic route toward xanthine-based enantiomerically pure active pharmaceutical ingredients (API) - proxyphylline, xanthinol, and diprophylline employing various recombinant short-chain ADHs with (R)- or (S)-selectivity as key biocatalysts. By choosing the appropriate ADH, the (R)- as well as the (S)-enantiomer of proxyphylline was prepared in excellent enantiomeric excess (99-99.9% ee), >99% conversion, and the isolated yield ranging from 65% to 74%, depending on the used biocatalyst (ADH-A from Rhodococcus ruber or a variant derived from Lactobacillus kefir, Lk-ADH-Lica). In turn, E. coli/ADH-catalyzed bioreduction of the carbonylic precursor of xanthinol and diprophylline furnished the corresponding (S)-chlorohydrin in >99% ee, >99% conversion, and 80% yield (in the case of Lk-ADH-Lica); while the (R)-counterpart was afforded in 94% ee, 64% conversion, and 41% yield (in the case of SyADH from Sphingobium yanoikuyae). After further chemical functionalization of the key (S)-chlorohydrin intermediate, the desired homochiral (R)-xanthinol (>99% ee) was obtained in 97% yield and (S)-diprophylline (>99% ee) in 90% yield. The devised biocatalytic method is straightforward and thus might be considered practical in the manufacturing of title pharmaceuticals.


Subject(s)
Chlorohydrins , Dyphylline , Biocatalysis , Escherichia coli , Hydrogen , Stereoisomerism , Theophylline/analogs & derivatives
8.
Chem Commun (Camb) ; 56(47): 6340-6343, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32391538

ABSTRACT

A self-sufficient nicotinamide-dependent intramolecular bio-Tishchenko-type reaction was developed. The reaction is catalyzed by alcohol dehydrogenases and proceeds through formal intramolecular hydride transfer on dialdehydes to deliver lactones. Regioselectivity on [1,1'-biphenyl]-2,2'-dicarbaldehyde substrates could be controlled via the electronic properties of the substituents. Preparative scale synthesis provided access to substituted dibenzo[c,e]oxepin-5(7H)-ones.

9.
Org Biomol Chem ; 16(43): 8030-8033, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30334043

ABSTRACT

A three-step one-pot biocatalytic cascade was designed for the enantioselective formal α-amination of hexanoic acid to l-norleucine. Regioselective hydroxylation by P450CLA peroxygenase to 2-hydroxyhexanoic acid was followed by oxidation to the ketoacid by two stereocomplementary dehydrogenases. Combination with final stereoselective reductive amination by amino acid dehydrogenase furnished l-norleucine in >97% ee.


Subject(s)
Biocatalysis , Caproates/chemistry , Cytochrome P-450 Enzyme System/metabolism , Norleucine/chemistry , Amination , Bacteria/enzymology , Stereoisomerism , Substrate Specificity
10.
Metallomics ; 10(10): 1532-1538, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30246828

ABSTRACT

Selenoneine, a naturally occurring form of selenium, is the selenium analogue of ergothioneine, a sulfur species with health relevance not only as a purported antioxidant but likely also beyond. Selenoneine has been speculated to exhibit similar effects. To study selenoneine's health properties as well as its metabolic transformation, the pure compound is required. Chemical synthesis of selenoneine, however, is challenging and biosynthetic approaches have been sought. We herein report the biosynthesis and isolation of selenoneine from genetically modified fission yeast Schizosaccharomyces pombe grown in a medium containing sodium selenate. After cell lysis and extraction with methanol, selenoneine was purified by three consecutive preparative reversed-phase HPLC steps. The product obtained at the mg level was characterised by high resolution mass spectrometry, NMR and HPLC/ICPMS. Biosynthesis was found to be a promising alternative to chemical synthesis, and should be suitable for upscaling to produce higher amounts of this important selenium species in the future.


Subject(s)
Histidine/analogs & derivatives , Organoselenium Compounds/isolation & purification , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Chromatography, High Pressure Liquid , Genetic Engineering , Histidine/biosynthesis , Histidine/isolation & purification , Mass Spectrometry , Schizosaccharomyces/growth & development
11.
Angew Chem Int Ed Engl ; 56(44): 13893-13897, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28857436

ABSTRACT

The utilization of CO2 as a carbon source for organic synthesis meets the urgent demand for more sustainability in the production of chemicals. Herein, we report on the enzyme-catalyzed para-carboxylation of catechols, employing 3,4-dihydroxybenzoic acid decarboxylases (AroY) that belong to the UbiD enzyme family. Crystal structures and accompanying solution data confirmed that AroY utilizes the recently discovered prenylated FMN (prFMN) cofactor, and requires oxidative maturation to form the catalytically competent prFMNiminium species. This study reports on the in vitro reconstitution and activation of a prFMN-dependent enzyme that is capable of directly carboxylating aromatic catechol substrates under ambient conditions. A reaction mechanism for the reversible decarboxylation involving an intermediate with a single covalent bond between a quinoid adduct and cofactor is proposed, which is distinct from the mechanism of prFMN-associated 1,3-dipolar cycloadditions in related enzymes.

12.
ChemSusChem ; 9(24): 3393-3396, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27885835

ABSTRACT

A case of hydride-independent reaction catalyzed by flavin-dependent ene-reductases from the Old Yellow Enzyme (OYE) family was identified. α-Angelica lactone was isomerized to the conjugated ß-isomer in a nicotinamide-free and hydride-independent process. The catalytic cycle of C=C bond isomerization appears to be flavin-independent and to rely solely on a deprotonation-reprotonation sequence through acid-base catalysis. Key residues in the enzyme active site were mutated and provided insight on important mechanistic features. The isomerization of α-angelica lactone by OYE2 in aqueous buffer furnished 6.3 mm ß-isomer in 15 min at 30 °C. In presence of nicotinamide adenine dinucleotide (NADH), the latter could be further reduced to γ-valerolactone. This enzymatic tool was successfully applied on semi-preparative scale and constitutes a sustainable process for the valorization of platform chemicals from renewable resources.


Subject(s)
4-Butyrolactone/analogs & derivatives , Carbon/chemistry , Hydrogen/chemistry , Lactones/chemistry , Oxidoreductases/metabolism , 4-Butyrolactone/chemistry , Catalytic Domain , Isomerism , Oxidoreductases/chemistry , Temperature
13.
Int J Pharm ; 458(1): 1-8, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24157344

ABSTRACT

The chronic autoimmune disorder rheumatoid arthritis (RA) affects millions of adults and children every year. Chronically activated macrophages secreting enzymes and inflammatory cytokines play a key role in RA. Distinctive marker molecules on the macrophage surface could be used to design a targeted drug delivery device for the treatment of RA without affecting healthy cells and tissues. Here, different methods for covalent attachment of antibodies (mAb) recognizing MHC class II molecules found on macrophages onto human serum albumin (HSA) nanocapsules were compared. HSA nanocapsules were prepared with a hydrodynamic diameter of 500.7 ± 9.4 nm and a narrow size distribution as indicated by a polydispersity index (PDI) of 0.255 ± 0.024. This was achieved by using a sonochemical process avoiding toxic cross linking agents and emulsifiers. Covalent binding of mAb on the surface of HSA nanocapsules was realized using polyethyleneglycol (PEG)3000 as spacer molecule. The presence of mAb was confirmed by confocal laser scanning microscopy (CLSM) and enzyme-linked immunosorbent assay (ELISA). Specific binding of mAb-HSA nanocapsules to MHC class II molecules on antigen-presenting cells was demonstrated by flow cytometry analysis.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Nanocapsules/administration & dosage , Serum Albumin/administration & dosage , Antibodies, Monoclonal/chemistry , Cell Line, Tumor , Drug Delivery Systems/methods , Histocompatibility Antigens Class II/metabolism , Humans , Jurkat Cells , Macrophages/drug effects , Nanocapsules/chemistry , Particle Size , Polyethylene Glycols/chemistry , Serum Albumin/chemistry
14.
Int J Pharm ; 427(2): 460-6, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22374516

ABSTRACT

Activated synovial macrophages play a key role in Rheumatoid Arthritis (RA). Recent studies have shown that folate receptor beta (FRß) is specifically expressed by activated macrophages. Therefore a folate-based nanodevice would provide the possibility of delivering therapeutic agents to activated macrophages without affecting normal cells and tissues. This study shows for the first time the sonochemical preparation of HSA nanocapsules avoiding toxic cross linking chemicals and emulsifiers used in other methods. Production of HSA nanocapsules was optimized leading to a diameter of 443.5 ± 9.0 nm and a narrow size distribution indicated by a polydispersity index (PDI) of 0.066 ± 0.080. Nanocapsules were surface modified with folic acid (FA) and the FA content was determined to be 0.38 and 6.42 molecules FA per molecule HSA, depending on the surplus of FA employed. Dynamic light scattering was used to determine size, PDI and zetapotential of the produced nanocapsules before and after surface modification. FA distribution on the surface of HSA nanocapsules was localized three-dimensionally after fluorescence labeling using confocal laser scanning microscopy (CLSM). Furthermore, specific binding and internalization of HSA nanocapsules by FRß-positive and FRß-negative macrophages, obtained from human peripheral blood mononuclear cells, was demonstrated by flow cytometry. FRß-expressing macrophages showed an increased binding for FA-modified capsules compared with those without FA.


Subject(s)
Drug Delivery Systems , Folic Acid/chemistry , Macrophages/drug effects , Nanocapsules , Serum Albumin/chemistry , Cell Separation , Cell Survival/drug effects , Cross-Linking Reagents , Drug Compounding , Emulsions , Flow Cytometry , Fluorescent Dyes , Folate Receptor 2/drug effects , Humans , Light , Macrophage Activation/physiology , Microscopy, Confocal , Oxazines , Particle Size , Scattering, Radiation , Surface Properties , Xanthenes
15.
Tetrahedron ; 66(3-2): 663-667, 2010 01 16.
Article in English | MEDLINE | ID: mdl-21270958

ABSTRACT

The asymmetric bioreduction of activated C-C-bonds catalyzed by a single flavoprotein was achieved via direct hydrogen transfer from a sacrificial 2-enone or 1,4-dione as hydrogen donor without requirement of a nicotinamide cofactor. Due to its simplicity, this system has clear advantages over conventional FAD-recycling systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...