Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
Viruses ; 16(3)2024 03 10.
Article in English | MEDLINE | ID: mdl-38543791

ABSTRACT

(1) Recombinant protein production in mammalian cells is either based on transient transfection processes, often inefficient and underlying high batch-to-batch variability, or on laborious generation of stable cell lines. Alternatively, BacMam, a transduction process using the baculovirus, can be employed. (2) Six transfecting agents were compared to baculovirus transduction in terms of transient and stable protein expression characteristics of the model protein ACE2-eGFP using HEK293-6E, CHO-K1, and Vero cell lines. Furthermore, process optimization such as expression enhancement using sodium butyrate and TSA or baculovirus purification was assessed. (3) Baculovirus transduction efficiency was superior to all transfection agents for all cell lines. Transduced protein expression was moderate, but an 18-fold expression increase was achieved using the enhancer sodium butyrate. Ultracentrifugation of baculovirus from a 3.5 L bioreactor significantly improved the transduction efficiency and protein expression. Stable cell lines were obtained with each baculovirus transduction, yet stable cell line generation after transfection was highly unreliable. (4) This study demonstrated the superiority of the BacMam platform to standard transfections. The baculovirus efficiently transduced an array of cell lines both transiently and stably and achieved the highest efficiency for all tested cell lines. The feasibility of the scale-up of baculovirus production was demonstrated and the possibility of baculovirus purification was successfully explored.


Subject(s)
Baculoviridae , Genetic Vectors , Animals , Humans , Butyric Acid , HEK293 Cells , Genetic Vectors/genetics , Baculoviridae/genetics , Baculoviridae/metabolism , Plasmids/genetics , Mammals
2.
Heliyon ; 9(11): e21878, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034768

ABSTRACT

Allergen-specific immunotherapy (AIT) is the only treatment for type I allergy, which achieves long-lasting effects. Repeated subcutaneous applications of allergen extracts cause a protective antibody response and an immune deviation of T cells. In AIT with allergoids, chemically modified allergen extracts are injected. During a so-called special pre-seasonal application scheme, after the initial phase of applying increased doses of allergoids is followed by natural allergen exposure as a maintenance phase. The effectiveness of allergoid vaccines has been described regarding the improvement of clinical symptoms and the development of protective humoral responses. In this longitudinal observational study, we sought to investigate changes at the T cell level in pre-seasonal AIT with allergoid. Different subsets within CD4+ and CD8+ T cells were monitored by flow cytometry in PBMC of patients known to possess protective antibody responses. Compared to before treatment, a small early boost among allergenic Th cells was observed after 4 months of AIT. In line, a slight Th2 bias was observed after 4 months within circulating T follicular T cells, Tfh and Tfc, representing pre-existing memory Th2 cells. Furthermore, it was demonstrated that responsiveness of CD8+ T cells to allergen stimulation decreased during the course of treatment. Apart from that, we found an influence of the meteorological season on the activation profile of Tfh and Tfc over the course of the treatment. Together, this is the first study investigating changes of different T cell subsets over the course of an allergoid AIT against airborne allergens. Our findings match previous reports on conventional AIT, especially the initial increase of Th2 responses. However, the observed changes were less pronounced which may be either due to the modification of allergens or to the reduced maintenance dose provided by natural allergen exposure compared to a perennial protocol.

3.
Pharmaceutics ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36678751

ABSTRACT

Nature offers a wide range of evolutionary optimized materials that combine unique properties with intrinsic biocompatibility and that can be exploited as biomimetic materials. The R5 and RRIL peptides employed here are derived from silaffin proteins that play a crucial role in the biomineralization of marine diatom silica shells and are also able to form silica materials in vitro. Here, we demonstrate the application of biomimetic silica particles as a vaccine delivery and adjuvant platform by linking the precipitating peptides R5 and the RRIL motif to a variety of peptide antigens. The resulting antigen-loaded silica particles combine the advantages of biomaterial-based vaccines with the proven intracellular uptake of silica particles. These particles induce NETosis in human neutrophils as well as IL-6 and TNF-α secretion in murine bone marrow-derived dendritic cells.

4.
Vaccines (Basel) ; 9(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915724

ABSTRACT

Aluminum hydroxide (alum) and monophosphoryl-lipid A (MPLA) are conventional adjuvants in vaccines for allergen-specific immunotherapy (AIT). Alum triggers the release of neutrophil extracellular traps (NETs) by neutrophils. NETs contain expelled decondensed chromatin associated with granular material and may act as danger-associated molecular patterns and activate antigen-presenting cells. We investigated whether adjuvant-induced NETs contribute to innate responses to AIT-vaccines. Human neutrophils were incubated with alum, MPLA and adjuvant-containing AIT-vaccine preparations. NETs were verified by time-lapse and confocal fluorescence microscopy and quantitatively assessed by DNA and elastase release and ROS production. In contrast to MPLA, alum represented a potent trigger for NET release. Vaccine formulations containing alum resulted in less NET release than alum alone, whereas the vaccine containing MPLA induced stronger NET responses than MPLA alone. NETs and alum alone and synergistically increased the expression of molecules involved in antigen presentation, i.e., CD80, CD86 and CD83, by peripheral blood monocytes. Monocyte priming with NETs resulted in individually differing IL-1ß- and IL-6-responses. Thus, NETs induced by adjuvants in AIT-vaccines can provide autonomous and cooperative effects on early innate responses. The high diversity of individual innate responses to adjuvants and AIT-vaccines may affect their therapeutic efficacy.

5.
Int J Mol Sci ; 22(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440617

ABSTRACT

For obvious reasons, such as, e.g., ethical concerns or sample accessibility, model systems are of highest importance to study the underlying molecular mechanisms of human maladies with the aim to develop innovative and effective therapeutic strategies. Since many years, animal models and highly proliferative transformed cell lines are successfully used for disease modelling, drug discovery, target validation, and preclinical testing. Still, species-specific differences regarding genetics and physiology and the limited suitability of immortalized cell lines to draw conclusions on normal human cells or specific cell types, are undeniable shortcomings. The progress in human pluripotent stem cell research now allows the growth of a virtually limitless supply of normal and DNA-edited human cells, which can be differentiated into various specific cell types. However, cells in the human body never fulfill their functions in mono-lineage isolation and diseases always develop in complex multicellular ecosystems. The recent advances in stem cell-based 3D organoid technologies allow a more accurate in vitro recapitulation of human pathologies. Embryoids are a specific type of such multicellular structures that do not only mimic a single organ or tissue, but the entire human conceptus or at least relevant components of it. Here we briefly describe the currently existing in vitro human embryo models and discuss their putative future relevance for disease modelling and drug discovery.


Subject(s)
Drug Discovery , Embryo, Mammalian/drug effects , Animals , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Drug Discovery/methods , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development/drug effects , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Humans , Models, Animal , Organoids/cytology , Organoids/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
6.
Eur J Immunol ; 51(3): 721-733, 2021 03.
Article in English | MEDLINE | ID: mdl-33180337

ABSTRACT

Costimulatory signals potently promote T-cell proliferation and effector function. Agonistic antibodies targeting costimulatory receptors of the TNFR family, such as 4-1BB and CD27, have entered clinical trials in cancer patients. Currently there is limited information how costimulatory signals regulate antigen-specific but also bystander activation of human CD8 T cells. Engineered antigen presenting cells (eAPC) efficiently presenting several common viral epitopes on HLA-A2 in combination with MHC class I tetramer staining were used to investigate the impact of costimulatory signals on human CD8 T-cell responses. CD28 costimulation potently augmented the percentage and number of antigen-reactive CD8 T cells, whereas eAPC expressing 4-1BB-ligand induced bystander proliferation of CD8 T cells and massive expansion of NK cells. Moreover, the 4-1BB agonist urelumab similarly induced bystander proliferation of CD8 T cells and NK cells in a dose-dependent manner. However, the promotion of bystander CD8 T-cell responses is not a general attribute of costimulatory TNF receptor superfamily (TNFRSF) members, since CD27 signals enhanced antigen-specific CD8 T cells responses without promoting significant bystander activation. Thus, the differential effects of costimulatory signals on the activation of human bystander CD8 T cells should be taken into account when costimulatory pathways are harnessed for cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Antigen-Presenting Cells/immunology , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , Genes, MHC Class I/immunology , Humans , K562 Cells , Killer Cells, Natural/immunology , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
7.
FASEB J ; 34(10): 14024-14041, 2020 10.
Article in English | MEDLINE | ID: mdl-32860638

ABSTRACT

Aluminium salts have been used in vaccines for decades. However, the mechanisms underlying their adjuvant effect are still unclear. Neutrophils, the first immune cells at the injection site, can release cellular DNA together with granular material, so-called neutrophil extracellular traps (NETs). In mice, NETs apparently play a role in aluminium hydroxide (alum)-adjuvant immune response to vaccines. Although no experimental data exist, this effect is assumed to be operative also in humans. As a first step to verify this knowledge in humans, we demonstrate that the injection of alum particles into human skin biopsies ex vivo leads to similar tissue infiltration of neutrophils and NET-formation. Moreover, we characterized the mechanism leading to alum-induced NET-release in human neutrophils as rapid, NADPH oxidase-independent process involving charge, phagocytosis, phagolysosomal rupture, Ca2+ -flux, hyperpolarization of the mitochondrial membrane, and mitochondrial ROS. Extracellular flow and inhibition experiments suggested that no additional energy from oxidative phosphorylation or glycolysis is required for NET-release. This study suggests a so far unappreciated role for neutrophils in the initial phase of immune responses to alum-containing vaccines in humans and provides novel insights into bioenergetic requirements of NET-formation.


Subject(s)
Adjuvants, Immunologic/pharmacology , Aluminum Hydroxide/pharmacology , Extracellular Traps , Lysosomes/metabolism , Membrane Potential, Mitochondrial , Neutrophil Infiltration , Neutrophils/drug effects , Calcium/metabolism , Cells, Cultured , Glycolysis , Humans , Mitochondria/metabolism , NADPH Oxidases/metabolism , Neutrophils/cytology , Neutrophils/immunology , Oxidative Phosphorylation
8.
FASEB J ; 33(5): 6514-6525, 2019 05.
Article in English | MEDLINE | ID: mdl-30807238

ABSTRACT

Skin resident T cells provide immediate immunologic responses at their specific location and play a role in the pathogenesis of skin diseases such as psoriasis. Recently, IL-9-producing T cells were described as a major T-cell subtype present in the skin, but knowledge on the biology and in situ regulation of this T-cell subtype is scarce. Here, we investigated the cytokine influence on skin T cells with focus on IL-9-producing T cells because a better understanding of their biology may identify novel therapeutic approaches. Healthy human skin biopsies were cultured either in the presence of IL-2, IL-4, and TGF-ß [T helper (Th)9-promoting condition (Th9-PC)] or IL-2 and IL-15 [standard condition (SC)]. Paired analysis of enzymatically isolated skin T cells and emigrated T cells after 4 wk of skin culture showed significant alterations of T-cell phenotypes, cytokine production, and IL-9-producing T-cell frequency. RNA sequencing analysis revealed differentially regulated pathways and identified CXCL8 and CXCL13 as top up-regulated genes in Th9-PC compared with SC. Functionally supernatant of stimulated skin-derived T cells, CXCL8 and CXCL13 increased neutrophil survival. We report that the cytokine environment alters skin-derived T-cell phenotype and functional properties.-Kienzl, P., Polacek, R., Reithofer, M., Reitermaier, R., Hagenbach, P., Tajpara, P., Vierhapper, M., Gschwandtner, M., Mildner, M. Jahn-Schmid, B., Elbe-Bürger, A. The cytokine environment influence on human skin-derived T cells.


Subject(s)
Cytokines/immunology , Gene Expression Regulation/immunology , Psoriasis/immunology , Skin/immunology , T-Lymphocytes/immunology , Cell Culture Techniques , Cells, Cultured , Female , Humans , Male , Psoriasis/pathology , Skin/pathology , T-Lymphocytes/pathology
9.
Int J Mol Sci ; 18(7)2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28653989

ABSTRACT

Globally, house dust mites (HDM) are one of the main sources of allergens causing Type I allergy, which has a high risk of progressing into a severe disabling disease manifestation such as allergic asthma. The strong protease activities of a number of these allergens are thought to be involved in several steps of the pathophysiology of this allergic disease. It has been a common notion that protease activity may be one of the properties that confers allergenicity to proteins. In this review we summarize and discuss the roles of the different HDM proteases in the development of Type I allergy.


Subject(s)
Allergens/immunology , Arthropod Proteins/immunology , Hypersensitivity/immunology , Peptide Hydrolases/immunology , Pyroglyphidae/immunology , Animals , Epithelium/immunology , Epithelium/physiopathology , Humans , Hypersensitivity/etiology , Hypersensitivity/physiopathology , Immunity, Cellular , Immunoglobulin E/immunology , Lung/immunology , Lung/physiopathology , Pyroglyphidae/enzymology , Th1 Cells/immunology , Th2 Cells/immunology
10.
Biotechnol Bioeng ; 112(7): 1488-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25689160

ABSTRACT

MicroRNAs are small non-coding RNAs that play a critical role in post-transcriptional control of gene expression. Recent publications of genomic sequencing data from the Chinese Hamster (CGR) and Chinese hamster ovary (CHO) cells provide new tools for the discovery of novel miRNAs in this important production system. Version 20 of the miRNA registry miRBase contains 307 mature miRNAs and 200 precursor sequences for CGR/CHO. We searched for evolutionary conserved miRNAs from miRBase v20 in recently published genomic data, derived from Chinese hamster and CHO cells, to further extend the list of known miRNAs. With our approach we could identify several hundred miRNA sequences in the genome. For several of these, the expression in CHO cells could be verified from multiple next-generation sequencing experiments. In addition, several hundred unexpressed miRNAs are awaiting further confirmation by testing for their transcription in different Chinese hamster tissues.


Subject(s)
MicroRNAs/genetics , Molecular Sequence Annotation , Animals , CHO Cells , Cricetulus , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...