Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antibodies (Basel) ; 13(2)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38651411

ABSTRACT

The activation of CD40-mediated signaling in antigen-presenting cells is a promising therapeutic strategy to promote immune responses against tumors. Most agonistic anti-CD40 antibodies currently in development require the Fcγ-receptor (FcγR)-mediated crosslinking of CD40 molecules for a meaningful activation of CD40 signaling but have limitations due to dose-limiting toxicities. Here we describe the identification of CD40 antibodies which strongly stimulate antigen-presenting cells in an entirely FcγR-independent manner. These Fc-silenced anti-CD40 antibodies induce an efficient upregulation of costimulatory receptors and cytokine release by dendritic cells. Finally, the most active identified anti-CD40 antibody shows activity in humanized mice. More importantly, there are no signs of obvious toxicities. These studies thus demonstrate the potent activation of antigen-presenting cells with anti-CD40 antibodies lacking FcγR-binding activity and open the possibility for an efficacious and safe combination therapy for cancer patients.

2.
Methods Mol Biol ; 2713: 117-128, 2024.
Article in English | MEDLINE | ID: mdl-37639118

ABSTRACT

Human immune system mice, also referred to as humanized mice, are a major research tool for the in vivo study of human immune system function. Upon reconstitution with human hematopoietic stem cells, all major human leukocyte populations develop in immunodeficient mice and can be detected in peripheral blood as well as in lymphatic and nonlymphatic tissue. This includes human macrophages that are intrinsically difficult to study from humans due to their organ-resident nature. In the following chapter, we provide a detailed protocol for generation of human immune system mice. We suggest that these mice are a suitable model to study human macrophage function in vivo.


Subject(s)
Lymphatic Vessels , Macrophages , Humans , Animals , Mice , Leukocytes , Hematopoietic Stem Cells , Research Design
3.
Nat Commun ; 14(1): 4253, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474523

ABSTRACT

Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/ß2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.


Subject(s)
Melanoma , T-Lymphocytes , Humans , Mice , Animals , T-Lymphocytes/pathology , Lymphocyte Function-Associated Antigen-1 , Endothelial Cells/pathology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/pathology , Immunotherapy , Tumor Microenvironment
4.
Front Immunol ; 13: 970290, 2022.
Article in English | MEDLINE | ID: mdl-36248847

ABSTRACT

Checkpoint control and immunomodulatory antibodies have become important tools for modulating tumor or self-reactive immune responses. A major issue preventing to make full use of the potential of these immunomodulatory antibodies are the severe side-effects, ranging from systemic cytokine release syndrome to organ-specific toxicities. The IgG Fc-portion has been demonstrated to contribute to both, the desired as well as the undesired antibody activities of checkpoint control and immunomodulatory antibodies via binding to cellular Fcγ-receptors (FcγR). Thus, choosing IgG subclasses, such as human IgG4, with a low ability to interact with FcγRs has been identified as a potential strategy to limit FcγR or complement pathway dependent side-effects. However, even immunomodulatory antibodies on the human IgG4 background may interact with cellular FcγRs and show dose limiting toxicities. By using a humanized mouse model allowing to study the immunomodulatory activity of human checkpoint control antibodies in vivo, we demonstrate that deglycosylation of the CD137-specific IgG4 antibody urelumab results in an amelioration of liver toxicity, while maintaining T cell stimulatory activity. In addition, our results emphasize that antibody dosing impacts the separation of side-effects of urelumab from its therapeutic activity via IgG deglycosylation. Thus, glycoengineering of human IgG4 antibodies may be a possible approach to limit collateral damage by immunomodulatory antibodies and allow for a greater therapeutic window of opportunity.


Subject(s)
Antibodies, Monoclonal , Receptors, IgG , Animals , Antibodies, Monoclonal/pharmacology , Glycosylation , Humans , Immunoglobulin G , Mice , Receptors, IgG/metabolism
5.
Front Immunol ; 12: 728322, 2021.
Article in English | MEDLINE | ID: mdl-34512662

ABSTRACT

Novel molecules that directly target the neonatal Fc receptor (FcRn) and/or Fc gamma receptors (FcγRs) are emerging as promising treatments for immunoglobulin G (IgG)-dependent autoimmune pathologies. Mutated Fc regions and monoclonal antibodies that target FcRn are currently in clinical development and hold promise for reducing the levels of circulating IgG. Additionally, engineered structures containing multimeric Fc regions allow the dual targeting of FcRn and FcγRs; however, their tolerance needs to first be validated in phase I clinical studies. Here, for the first time, we have developed a modified monomeric recombinant Fc optimized for binding to all FcRns and FcγRs without the drawback of possible tolerance associated with FcγR cross-linking. A rational approach using Fc engineering allowed the selection of LFBD192, an Fc with a combination of six mutations that exhibits improved binding to human FcRn and FcγR as well as mouse FcRn and FcγRIV. The potency of LFBD192 was compared with that of intravenous immunoglobulin (IVIg), an FcRn blocker (Fc-MST-HN), and a trimeric Fc that blocks FcRn and/or immune complex-mediated cell activation through FcγR without triggering an immune reaction in several in vitro tests and validated in three mouse models of autoimmune disease.


Subject(s)
Antirheumatic Agents/pharmacology , Arthritis, Experimental/prevention & control , Autoimmunity/drug effects , Immunoglobulin Fc Fragments/pharmacology , Receptors, Fc/antagonists & inhibitors , Receptors, IgG/antagonists & inhibitors , Animals , Antirheumatic Agents/metabolism , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Binding, Competitive , Complement C5a/metabolism , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Interleukin-2/metabolism , Jurkat Cells , Kinetics , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Phagocytosis/drug effects , Platelet Aggregation/drug effects , Protein Binding , Protein Engineering , Receptors, Fc/genetics , Receptors, Fc/immunology , Receptors, Fc/metabolism , Receptors, IgG/genetics , Receptors, IgG/immunology , Receptors, IgG/metabolism , Secretory Pathway , Signal Transduction , THP-1 Cells
6.
Elife ; 92020 07 02.
Article in English | MEDLINE | ID: mdl-32613944

ABSTRACT

Pathogen-specific antibody responses need to be tightly regulated to generate protective but limit self-reactive immune responses. While loss of humoral tolerance has been associated with microbial infections, the pathways involved in balancing protective versus autoreactive antibody responses in humans are incompletely understood. Studies in classical mouse model systems have provided evidence that balancing of immune responses through inhibitory receptors is an important quality control checkpoint. Genetic differences between inbred mouse models and the outbred human population and allelic receptor variants not present in mice; however, argue for caution when directly translating these findings to the human system. By studying Borrelia burgdorferi infection in humanized mice reconstituted with human hematopoietic stem cells from donors homozygous for a functional or a non-functional FcγRIIb allele, we show that the human inhibitory FcγRIIb is a critical checkpoint balancing protective and autoreactive immune responses, linking infection with induction of autoimmunity in the human immune system.


Subject(s)
Antibodies, Bacterial/immunology , Antibody Formation/immunology , Lyme Disease/immunology , Receptors, IgG/immunology , Animals , Autoantibodies/immunology , Autoimmunity/immunology , Borrelia burgdorferi/immunology , Hematopoietic Stem Cells , Humans , Mice
7.
Autophagy ; 15(11): 1899-1916, 2019 11.
Article in English | MEDLINE | ID: mdl-30982460

ABSTRACT

Infection and inflammation are able to induce diet-independent Na+-accumulation without commensurate water retention in afflicted tissues, which favors the pro-inflammatory activation of mouse macrophages and augments their antibacterial and antiparasitic activity. While Na+-boosted host defense against the protozoan parasite Leishmania major is mediated by increased expression of the leishmanicidal NOS2 (nitric oxide synthase 2, inducible), the molecular mechanisms underpinning this enhanced antibacterial defense of mouse macrophages with high Na+ (HS) exposure are unknown. Here, we provide evidence that HS-increased antibacterial activity against E. coli was neither dependent on NOS2 nor on the phagocyte oxidase. In contrast, HS-augmented antibacterial defense hinged on HIF1A (hypoxia inducible factor 1, alpha subunit)-dependent increased autophagy, and NFAT5 (nuclear factor of activated T cells 5)-dependent targeting of intracellular E. coli to acidic autolysosomal compartments. Overall, these findings suggest that the autolysosomal compartment is a novel target of Na+-modulated cell autonomous innate immunity. Abbreviations: ACT: actins; AKT: AKT serine/threonine kinase 1; ATG2A: autophagy related 2A; ATG4C: autophagy related 4C, cysteine peptidase; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1; BMDM: bone marrow-derived macrophages; BNIP3: BCL2/adenovirus E1B interacting protein 3; CFU: colony forming units; CM-H2DCFDA: 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester; CTSB: cathepsin B; CYBB: cytochrome b-245 beta chain; DAPI: 4,6-diamidino-2-phenylindole; DMOG: dimethyloxallyl glycine; DPI: diphenyleneiodonium chloride; E. coli: Escherichia coli; FDR: false discovery rate; GFP: green fluorescent protein; GSEA: gene set enrichment analysis; GO: gene ontology; HIF1A: hypoxia inducible factor 1, alpha subunit; HUGO: human genome organization; HS: high salt (+ 40 mM of NaCl to standard cell culture conditions); HSP90: heat shock 90 kDa proteins; LDH: lactate dehydrogenase; LPS: lipopolysaccharide; Lyz2/LysM: lysozyme 2; NFAT5/TonEBP: nuclear factor of activated T cells 5; MΦ: macrophages; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: mean fluorescence intensity; MIC: minimum inhibitory concentration; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; NaCl: sodium chloride; NES: normalized enrichment score; n.s.: not significant; NO: nitric oxide; NOS2/iNOS: nitric oxide synthase 2, inducible; NS: normal salt; PCR: polymerase chain reaction; PGK1: phosphoglycerate kinase 1; PHOX: phagocyte oxidase; RFP: red fluorescent protein; RNA: ribonucleic acid; ROS: reactive oxygen species; sCFP3A: super cyan fluorescent protein 3A; SBFI: sodium-binding benzofuran isophthalate; SLC2A1/GLUT1: solute carrier family 2 (facilitated glucose transporter), member 1; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like kinase 1; v-ATPase: vacuolar-type H+-ATPase; WT: wild type.


Subject(s)
Autophagosomes/metabolism , Autophagy/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Macrophages/immunology , Sodium/pharmacology , Transcription Factors/metabolism , Animals , Autophagosomes/microbiology , Autophagy/genetics , Escherichia coli/metabolism , Escherichia coli/pathogenicity , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Hydrogen-Ion Concentration , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation/metabolism , Lysosomes/genetics , Lysosomes/immunology , Lysosomes/metabolism , Lysosomes/microbiology , Macrophages/drug effects , Macrophages/microbiology , Macrophages/ultrastructure , Mannitol/toxicity , Mice , Microscopy, Electron, Transmission , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oligonucleotide Array Sequence Analysis , Osmotic Pressure/drug effects , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Sodium/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...