Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38766026

ABSTRACT

Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, and imaging modalities. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.

3.
Nature ; 629(8010): 146-153, 2024 May.
Article in English | MEDLINE | ID: mdl-38632406

ABSTRACT

Astrocytes, the most abundant non-neuronal cell type in the mammalian brain, are crucial circuit components that respond to and modulate neuronal activity through calcium (Ca2+) signalling1-7. Astrocyte Ca2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales-from fast, subcellular activity3,4 to slow, synchronized activity across connected astrocyte networks8-10-to influence many processes5,7,11. However, the inputs that drive astrocyte network dynamics remain unclear. Here we used ex vivo and in vivo two-photon astrocyte imaging while mimicking neuronal neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of GABA and glutamate lead to widespread, long-lasting astrocyte Ca2+ responses beyond an individual stimulated cell. Further, we find that a key subset of Ca2+ activity-propagative activity-differentiates astrocyte network responses to these two main neurotransmitters, and may influence responses to future inputs. Together, our results demonstrate that local, transient neurotransmitter inputs are encoded by broad cortical astrocyte networks over a minutes-long time course, contributing to accumulating evidence that substantial astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales12-14. These findings will enable future studies to investigate the link between specific astrocyte Ca2+ activity and specific functional outputs, which could build a consistent framework for astrocytic modulation of neuronal activity.


Subject(s)
Astrocytes , Cerebral Cortex , Glutamic Acid , Nerve Net , Neurotransmitter Agents , gamma-Aminobutyric Acid , Animals , Female , Male , Mice , Astrocytes/metabolism , Astrocytes/cytology , Calcium/metabolism , Calcium Signaling , Cell Communication , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Mice, Inbred C57BL , Nerve Net/cytology , Nerve Net/metabolism , Neurons/metabolism , Neurotransmitter Agents/metabolism , Time Factors
4.
bioRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38106119

ABSTRACT

Astrocytes-the most abundant non-neuronal cell type in the mammalian brain-are crucial circuit components that respond to and modulate neuronal activity via calcium (Ca 2+ ) signaling 1-8 . Astrocyte Ca 2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales: from fast, subcellular activity 3,4 to slow, synchronized activity that travels across connected astrocyte networks 9-11 . Furthermore, astrocyte network activity has been shown to influence a wide range of processes 5,8,12 . While astrocyte network activity has important implications for neuronal circuit function, the inputs that drive astrocyte network dynamics remain unclear. Here we used ex vivo and in vivo two-photon Ca 2+ imaging of astrocytes while mimicking neuronal neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of GABA and glutamate lead to widespread, long-lasting astrocyte Ca 2+ responses beyond an individual stimulated cell. Further, we find that a key subset of Ca 2+ activity-propagative events-differentiates astrocyte network responses to these two major neurotransmitters, and gates responses to future inputs. Together, our results demonstrate that local, transient neurotransmitter inputs are encoded by broad cortical astrocyte networks over the course of minutes, contributing to accumulating evidence across multiple model organisms that significant astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales 13-15 . We anticipate that this study will be a starting point for future studies investigating the link between specific astrocyte Ca 2+ activity and specific astrocyte functional outputs, which could build a consistent framework for astrocytic modulation of neuronal activity.

5.
Nat Neurosci ; 26(4): 579-593, 2023 04.
Article in English | MEDLINE | ID: mdl-36997759

ABSTRACT

Cortical state, defined by population-level neuronal activity patterns, determines sensory perception. While arousal-associated neuromodulators-including norepinephrine (NE)-reduce cortical synchrony, how the cortex resynchronizes remains unknown. Furthermore, general mechanisms regulating cortical synchrony in the wake state are poorly understood. Using in vivo imaging and electrophysiology in mouse visual cortex, we describe a critical role for cortical astrocytes in circuit resynchronization. We characterize astrocytes' calcium responses to changes in behavioral arousal and NE, and show that astrocytes signal when arousal-driven neuronal activity is reduced and bi-hemispheric cortical synchrony is increased. Using in vivo pharmacology, we uncover a paradoxical, synchronizing response to Adra1a receptor stimulation. We reconcile these results by demonstrating that astrocyte-specific deletion of Adra1a enhances arousal-driven neuronal activity, while impairing arousal-related cortical synchrony. Our findings demonstrate that astrocytic NE signaling acts as a distinct neuromodulatory pathway, regulating cortical state and linking arousal-associated desynchrony to cortical circuit resynchronization.


Subject(s)
Astrocytes , Norepinephrine , Mice , Animals , Astrocytes/metabolism , Norepinephrine/metabolism , Neurons/physiology , Arousal/physiology , Neurotransmitter Agents/metabolism
6.
Cell Rep ; 40(13): 111426, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170823

ABSTRACT

The prefrontal cortex (PFC) is a hub for cognitive control, and dopamine profoundly influences its functions. In other brain regions, astrocytes sense diverse neurotransmitters and neuromodulators and, in turn, orchestrate regulation of neuroactive substances. However, basic physiology of PFC astrocytes, including which neuromodulatory signals they respond to and how they contribute to PFC function, is unclear. Here, we characterize divergent signaling signatures in mouse astrocytes of the PFC and primary sensory cortex, which show differential responsiveness to locomotion. We find that PFC astrocytes express receptors for dopamine but are unresponsive through the Gs/Gi-cAMP pathway. Instead, fast calcium signals in PFC astrocytes are time locked to dopamine release and are mediated by α1-adrenergic receptors both ex vivo and in vivo. Further, we describe dopamine-triggered regulation of extracellular ATP at PFC astrocyte territories. Thus, we identify astrocytes as active players in dopaminergic signaling in the PFC, contributing to PFC function though neuromodulator receptor crosstalk.


Subject(s)
Dopamine , Receptors, Adrenergic, alpha-1 , Adenosine Triphosphate/metabolism , Animals , Astrocytes/metabolism , Calcium/metabolism , Dopamine/metabolism , Mice , Prefrontal Cortex/metabolism , Receptors, Adrenergic, alpha-1/metabolism
7.
Elife ; 102021 03 17.
Article in English | MEDLINE | ID: mdl-33729913

ABSTRACT

Non-rapid eye movement (NREM) sleep, characterized by slow-wave electrophysiological activity, underlies several critical functions, including learning and memory. However, NREM sleep is heterogeneous, varying in duration, depth, and spatially across the cortex. While these NREM sleep features are thought to be largely independently regulated, there is also evidence that they are mechanistically coupled. To investigate how cortical NREM sleep features are controlled, we examined the astrocytic network, comprising a cortex-wide syncytium that influences population-level neuronal activity. We quantified endogenous astrocyte activity in mice over natural sleep and wake, then manipulated specific astrocytic G-protein-coupled receptor (GPCR) signaling pathways in vivo. We find that astrocytic Gi- and Gq-coupled GPCR signaling separately control NREM sleep depth and duration, respectively, and that astrocytic signaling causes differential changes in local and remote cortex. These data support a model in which the cortical astrocyte network serves as a hub for regulating distinct NREM sleep features.


Sleep has many roles, from strengthening new memories to regulating mood and appetite. While we might instinctively think of sleep as a uniform state of reduced brain activity, the reality is more complex. First, over the course of the night, we cycle between a number of different sleep stages, which reflect different levels of sleep depth. Second, the amount of sleep depth is not necessarily even across the brain but can vary between regions. These sleep stages consist of either rapid eye movement (REM) sleep or non-REM (NREM) sleep. REM sleep is when most dreaming occurs, whereas NREM sleep is particularly important for learning and memory and can vary in duration and depth. During NREM sleep, large groups of neurons synchronize their firing to create rhythmic waves of activity known as slow waves. The more synchronous the activity, the deeper the sleep. Vaidyanathan et al. now show that brain cells called astrocytes help regulate NREM sleep. Astrocytes are not neurons but belong to a group of specialized cells called glia. They are the largest glia cell type in the brain and display an array of proteins on their surfaces called G-protein-coupled receptors (GPCRs). These enable them to sense sleep-wake signals from other parts of the brain and to generate their own signals. In fact, each astrocyte can communicate with thousands of neurons at once. They are therefore well-poised to coordinate brain activity during NREM sleep. Using innovative tools, Vaidyanathan et al. visualized astrocyte activity in mice as the animals woke up or fell asleep. The results showed that astrocytes change their activity just before each sleep­wake transition. They also revealed that astrocytes control both the depth and duration of NREM sleep via two different types of GPCR signals. Increasing one of these signals (Gi-GPCR) made the mice sleep more deeply but did not change sleep duration. Decreasing the other (Gq-GPCR) made the mice sleep for longer but did not affect sleep depth. Sleep problems affect many people at some point in their lives, and often co-exist with other conditions such as mental health disorders. Understanding how the brain regulates different features of sleep could help us develop better ­ and perhaps more specific ­ treatments for sleep disorders. The current study suggests that manipulating GPCRs on astrocytes might increase sleep depth, for example. But before work to test this idea can begin, we must first determine whether findings from sleeping mice also apply to people.


Subject(s)
Astrocytes/physiology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Sleep/physiology , Visual Cortex/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL
8.
Nat Neurosci ; 22(11): 1936-1944, 2019 11.
Article in English | MEDLINE | ID: mdl-31570865

ABSTRACT

Recent work examining astrocytic physiology centers on fluorescence imaging, due to development of sensitive fluorescent indicators and observation of spatiotemporally complex calcium activity. However, the field remains hindered in characterizing these dynamics, both within single cells and at the population level, because of the insufficiency of current region-of-interest-based approaches to describe activity that is often spatially unfixed, size-varying and propagative. Here we present an analytical framework that releases astrocyte biologists from region-of-interest-based tools. The Astrocyte Quantitative Analysis (AQuA) software takes an event-based perspective to model and accurately quantify complex calcium and neurotransmitter activity in fluorescence imaging datasets. We apply AQuA to a range of ex vivo and in vivo imaging data and use physiologically relevant parameters to comprehensively describe the data. Since AQuA is data-driven and based on machine learning principles, it can be applied across model organisms, fluorescent indicators, experimental modes, and imaging resolutions and speeds, enabling researchers to elucidate fundamental neural physiology.


Subject(s)
Astrocytes/metabolism , Calcium/metabolism , Image Processing, Computer-Assisted/methods , Neurotransmitter Agents/metabolism , Optical Imaging/methods , Adenoviridae , Algorithms , Animals , Animals, Newborn , Genetic Vectors , Mice , Software , Transfection , Visual Cortex/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...