Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Huntingtons Dis ; 13(2): 201-214, 2024.
Article in English | MEDLINE | ID: mdl-38640164

ABSTRACT

Background: Huntington's disease is an inheritable autosomal dominant disorder caused by an expanded CAG trinucleotide repeat within the Huntingtin gene, leading to a polyglutamine (polyQ) expansion in the mutant protein. Objective: A potential therapeutic approach for delaying or preventing the onset of the disease involves enhancing the degradation of the aggregation-prone polyQ-expanded N-terminal mutant huntingtin (mHTT) exon1 fragment. A few proteases and peptidases have been identified that are able to cleave polyQ fragments with low efficiency. This study aims to identify a potent polyQ-degrading endopeptidase. Methods: Here we used quenched polyQ peptides to identify a polyQ-degrading endopeptidase. Next we investigated its role on HTT turnover, using purified polyQ-expanded HTT fragments and striatal cells expressing mHTT exon1 peptides. Results: We identified insulin-degrading enzyme (IDE) as a novel endopeptidase for degrading polyQ peptides. IDE was, however, ineffective in reducing purified polyQ-expanded HTT fragments. Similarly, in striatal cells expressing mHTT exon1 peptides, IDE did not enhance mHTT turnover. Conclusions: This study shows that despite IDE's efficiency in degrading polyQ peptides, it does not contribute to the direct degradation of polyQ-expanded mHTT fragments.


Subject(s)
Huntingtin Protein , Insulysin , Peptides , Insulysin/metabolism , Insulysin/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Peptides/metabolism , Humans , Animals , Huntington Disease/metabolism , Huntington Disease/genetics , Mice , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Corpus Striatum/metabolism
2.
Microbiol Spectr ; 11(6): e0302923, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37975661

ABSTRACT

IMPORTANCE: Even though the coronavirus disease 2019 (COVID-19) pandemic is slowly developing into a conventional infectious disease, the long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection are still not well understood. One of the problems is that many COVID-19 cases develop acute kidney injuries. Still, it is heavily debated whether SARS-CoV-2 virus enters and actively replicates in kidney tissue and if SARS-CoV-2 virus particles can be detected in kidney during or post-infection. Here, we demonstrated that nucleocapsid N protein was detected in kidney tubular epithelium of patients that already recovered form COVID-19. The presence of the abundantly produced N protein without signs of viral replication could have implications for the recurrence of kidney disease and have a continuing effect on the immune system.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Nucleocapsid Proteins , Virus Replication , Epithelium
3.
Front Mol Biosci ; 10: 1107323, 2023.
Article in English | MEDLINE | ID: mdl-36926679

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the N-terminus of the HTT gene. The CAG repeat expansion translates into a polyglutamine expansion in the mutant HTT (mHTT) protein, resulting in intracellular aggregation and neurotoxicity. Lowering the mHTT protein by reducing synthesis or improving degradation would delay or prevent the onset of HD, and the ubiquitin-proteasome system (UPS) could be an important pathway to clear the mHTT proteins prior to aggregation. The UPS is not impaired in HD, and proteasomes can degrade mHTT entirely when HTT is targeted for degradation. However, the mHTT protein is differently ubiquitinated when compared to wild-type HTT (wtHTT), suggesting that the polyQ expansion affects interaction with (de) ubiquitinating enzymes and subsequent targeting for degradation. The soluble mHTT protein is associated with several ubiquitin-modifying enzymes, and various ubiquitin-modifying enzymes have been identified that are linked to Huntington's disease, either by improving mHTT turnover or affecting overall homeostasis. Here we describe their potential mechanism of action toward improved mHTT targeting towards the proteostasis machinery.

4.
PLoS One ; 17(12): e0278130, 2022.
Article in English | MEDLINE | ID: mdl-36574405

ABSTRACT

Huntington's disease is an autosomal dominant heritable disorder caused by an expanded CAG trinucleotide repeat at the N-terminus of the Huntingtin (HTT) gene. Lowering the levels of soluble mutant HTT protein prior to aggregation through increased degradation by the proteasome would be a therapeutic strategy to prevent or delay the onset of disease. Native PAGE experiments in HdhQ150 mice and R6/2 mice showed that PA28αß disassembles from the 20S proteasome during disease progression in the affected cortex, striatum and hippocampus but not in cerebellum and brainstem. Modulating PA28αß activated proteasomes in various in vitro models showed that PA28αß improved polyQ degradation, but decreased the turnover of mutant HTT. Silencing of PA28αß in cells lead to an increase in mutant HTT aggregates, suggesting that PA28αß is critical for overall proteostasis, but only indirectly affects mutant HTT aggregation.


Subject(s)
Huntington Disease , Mice , Animals , Huntington Disease/metabolism , Cerebellum/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteostasis , Brain Stem/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Disease Models, Animal , Brain/metabolism
5.
Microbiol Spectr ; 10(1): e0127121, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35171025

ABSTRACT

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global outbreak and prompted an enormous research effort. Still, the subcellular localization of the coronavirus in lungs of COVID-19 patients is not well understood. Here, the localization of the SARS-CoV-2 proteins is studied in postmortem lung material of COVID-19 patients and in SARS-CoV-2-infected Vero cells, processed identically. Correlative light and electron microscopy on semithick cryo-sections demonstrated induction of electron-lucent, lipid-filled compartments after SARS-CoV-2 infection in both lung and cell cultures. In lung tissue, the nonstructural protein 4 and the stable nucleocapsid N-protein were detected on these novel lipid-filled compartments. The induction of such lipid-filled compartments and the localization of the viral proteins in lung of patients with fatal COVID-19 may explain the extensive inflammatory response and provide a new hallmark for SARS-CoV-2 infection at the final, fatal stage of infection. IMPORTANCE Visualization of the subcellular localization of SARS-CoV-2 proteins in lung patient material of COVID-19 patients is important for the understanding of this new virus. We detected viral proteins in the context of the ultrastructure of infected cells and tissues and discovered that some viral proteins accumulate in novel, lipid-filled compartments. These structures are induced in Vero cells but, more importantly, also in lung of patients with COVID-19. We have characterized these lipid-filled compartments and determined that this is a novel, virus-induced structure. Immunogold labeling demonstrated that cellular markers, such as CD63 and lipid droplet marker PLIN-2, are absent. Colocalization of lipid-filled compartments with the stable N-protein and nonstructural protein 4 in lung of the last stages of COVID-19 indicates that these compartments play a key role in the devastating immune response that SARS-CoV-2 infections provoke.


Subject(s)
COVID-19/metabolism , Lipid Metabolism/physiology , Lipids/analysis , Lung/metabolism , Nucleocapsid/analysis , SARS-CoV-2 , Adolescent , Aged , Animals , COVID-19/pathology , Child, Preschool , Chlorocebus aethiops , Disease Outbreaks , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Lung/cytology , Lung/pathology , Lung/ultrastructure , Male , Microscopy, Immunoelectron , Middle Aged , Nucleocapsid/metabolism , Rabbits , SARS-CoV-2/ultrastructure , Vero Cells/virology
6.
J Huntingtons Dis ; 10(3): 335-347, 2021.
Article in English | MEDLINE | ID: mdl-34151850

ABSTRACT

BACKGROUND: Huntington's disease is a neurodegenerative disorder caused by a CAG expansion in the huntingtin gene, resulting in a polyglutamine expansion in the ubiquitously expressed mutant huntingtin protein. OBJECTIVE: Here we set out to identify proteins interacting with the full-length wild-type and mutant huntingtin protein in the mice cortex brain region to understand affected biological processes in Huntington's disease pathology. METHODS: Full-length huntingtin with 20 and 140 polyQ repeats were formaldehyde-crosslinked and isolated via their N-terminal Flag-tag from 2-month-old mice brain cortex. Interacting proteins were identified and quantified by label-free liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: We identified 30 interactors specific for wild-type huntingtin, 14 interactors specific for mutant huntingtin and 14 shared interactors that interacted with both wild-type and mutant huntingtin, including known interactors such as F8a1/Hap40. Syt1, Ykt6, and Snap47, involved in vesicle transport and exocytosis, were among the proteins that interacted specifically with wild-type huntingtin. Various other proteins involved in energy metabolism and mitochondria were also found to associate predominantly with wild-type huntingtin, whereas mutant huntingtin interacted with proteins involved in translation including Mapk3, Eif3h and Eef1a2. CONCLUSION: Here we identified both shared and specific interactors of wild-type and mutant huntingtin, which are involved in different biological processes including exocytosis, vesicle transport, translation and metabolism. These findings contribute to the understanding of the roles that wild-type and mutant huntingtin play in a variety of cellular processes both in healthy conditions and Huntington's disease pathology.


Subject(s)
Huntingtin Protein/genetics , Huntington Disease , Animals , Brain/metabolism , Chromatography, Liquid , Huntingtin Protein/metabolism , Huntington Disease/genetics , Immunoprecipitation , Mice , Mutant Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Synaptotagmin I , Tandem Mass Spectrometry
7.
mSphere ; 6(3)2021 05 05.
Article in English | MEDLINE | ID: mdl-33952660

ABSTRACT

Mycobacterium tuberculosis infections claim more than a million lives each year, and better treatments or vaccines are required. A crucial pathogenicity factor is translocation from phagolysosomes to the cytosol upon phagocytosis by macrophages. Translocation from the phagolysosome to the cytosol is an ESX-1-dependent process, as previously shown in vitro Here, we show that in vivo, mycobacteria also translocate to the cytosol but mainly when host immunity is compromised. We observed only low numbers of cytosolic bacilli in mice, armadillos, zebrafish, and patient material infected with M. tuberculosis, M. marinum, or M. leprae In contrast, when innate or adaptive immunity was compromised, as in severe combined immunodeficiency (SCID) or interleukin-1 receptor 1 (IL-1R1)-deficient mice, significant numbers of cytosolic M. tuberculosis bacilli were detected in the lungs of infected mice. Taken together, in vivo, translocation to the cytosol of M. tuberculosis is controlled by adaptive immune responses as well as IL-1R1-mediated signals.IMPORTANCE For decades, Mycobacterium tuberculosis has been one of the deadliest pathogens known. Despite infecting approximately one-third of the human population, no effective treatment or vaccine is available. A crucial pathogenicity factor is subcellular localization, as M. tuberculosis can translocate from phagolysosome to the cytosol in macrophages. The situation in vivo is more complicated. In this study, we establish that high-level cytosolic escape of mycobacteria can indeed occur in vivo but mainly when host resistance is compromised. The IL-1 pathway is crucial for the control of the number of cytosolic mycobacteria. The establishment that immune signals result in the clearance of cells containing cytosolic mycobacteria connects two important fields, cell biology and immunology, which is vital for the understanding of the pathology of M. tuberculosis.


Subject(s)
Cytosol/microbiology , Mycobacterium/immunology , Mycobacterium/pathogenicity , Phagosomes/microbiology , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/immunology , Signal Transduction/immunology , Animals , Armadillos/microbiology , Bacterial Translocation , Cytosol/immunology , Female , Humans , Leprosy/microbiology , Male , Mice , Mice, Inbred BALB C , Mice, SCID , Mycobacterium/classification , Phagosomes/immunology , Skin/microbiology , Skin/pathology , THP-1 Cells , Zebrafish
8.
Front Chem ; 8: 485, 2020.
Article in English | MEDLINE | ID: mdl-32596207

ABSTRACT

Many neurodegenerative disorders including Huntington's Disease are hallmarked by intracellular protein aggregates that are decorated by ubiquitin and different ubiquitin ligases and deubiquitinating enzymes. The protein aggregates observed in Huntington's Disease are caused by a polyglutamine expansion in the N-terminus of the huntingtin protein (Htt). Improving the degradation of mutant Htt via the Ubiquitin Proteasome System prior to aggregation would be a therapeutic strategy to delay or prevent the onset of Huntington's Disease for which there is currently no cure. Here we examine the current approaches used to study the ubiquitination of both soluble Htt as well as insolubilized Htt present in aggregates, and we describe what is known about involved (de)ubiquitinating enzymes. Furthermore, we discuss novel methodologies to study the dynamics of Htt ubiquitination in living cells using fluorescent ubiquitin probes, to identify and quantify Htt ubiquitination by mass spectrometry-based approaches, and various approaches to identify involved ubiquitinating enzymes.

9.
Front Mol Biosci ; 6: 56, 2019.
Article in English | MEDLINE | ID: mdl-31482094

ABSTRACT

The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.

10.
Mol Cell Proteomics ; 18(9): 1705-1720, 2019 09.
Article in English | MEDLINE | ID: mdl-31138642

ABSTRACT

Huntington's disease is caused by a polyglutamine repeat expansion in the huntingtin protein which affects the function and folding of the protein, and results in intracellular protein aggregates. Here, we examined whether this mutation leads to altered ubiquitination of huntingtin and other proteins in both soluble and insoluble fractions of brain lysates of the Q175 knock-in Huntington's disease mouse model and the Q20 wild-type mouse model. Ubiquitination sites are detected by identification of Gly-Gly (diGly) remnant motifs that remain on modified lysine residues after digestion. We identified K6, K9, K132, K804, and K837 as endogenous ubiquitination sites of soluble huntingtin, with wild-type huntingtin being mainly ubiquitinated at K132, K804, and K837. Mutant huntingtin protein levels were strongly reduced in the soluble fraction whereas K6 and K9 were mainly ubiquitinated. In the insoluble fraction increased levels of huntingtin K6 and K9 diGly sites were observed for mutant huntingtin as compared with wild type. Besides huntingtin, proteins with various roles, including membrane organization, transport, mRNA processing, gene transcription, translation, catabolic processes and oxidative phosphorylation, were differently expressed or ubiquitinated in wild-type and mutant huntingtin brain tissues. Correlating protein and diGly site fold changes in the soluble fraction revealed that diGly site abundances of most of the proteins were not related to protein fold changes, indicating that these proteins were differentially ubiquitinated in the Q175 mice. In contrast, both the fold change of the protein level and diGly site level were increased for several proteins in the insoluble fraction, including ubiquitin, ubiquilin-2, sequestosome-1/p62 and myo5a. Our data sheds light on putative novel proteins involved in different cellular processes as well as their ubiquitination status in Huntington's disease, which forms the basis for further mechanistic studies to understand the role of differential ubiquitination of huntingtin and ubiquitin-regulated processes in Huntington's disease.


Subject(s)
Brain/metabolism , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Proteome/metabolism , Ubiquitin/metabolism , Animals , Cell Membrane/metabolism , Huntingtin Protein/genetics , Lysine/metabolism , Mice, Mutant Strains , Proteome/analysis , Solubility , Ubiquitination , Workflow
11.
Front Microbiol ; 9: 2034, 2018.
Article in English | MEDLINE | ID: mdl-30233521

ABSTRACT

Tuberculosis is once again a major global threat, leading to more than 1 million deaths each year. Treatment options for tuberculosis patients are limited, expensive and characterized by severe side effects, especially in the case of multidrug-resistant forms. Uncovering novel vulnerabilities of the pathogen is crucial to generate new therapeutic strategies. Using high resolution microscopy techniques, we discovered one such vulnerability of Mycobacterium tuberculosis. We demonstrate that the DNA of M. tuberculosis can condense under stressful conditions such as starvation and antibiotic treatment. The DNA condensation is reversible and specific for viable bacteria. Based on these observations, we hypothesized that blocking the recovery from the condensed state could weaken the bacteria. We showed that after inducing DNA condensation, and subsequent blocking of acetylation of DNA binding proteins, the DNA localization in the bacteria is altered. Importantly under these conditions, Mycobacterium smegmatis did not replicate and its survival was significantly reduced. Our work demonstrates that agents that block recovery from the condensed state of the nucleoid can be exploited as antibiotic. The combination of fusidic acid and inhibition of acetylation of DNA binding proteins, via the Eis enzyme, potentiate the efficacy of fusidic acid by 10 and the Eis inhibitor to 1,000-fold. Hence, we propose that successive treatment with antibiotics and drugs interfering with recovery from DNA condensation constitutes a novel approach for treatment of tuberculosis and related bacterial infections.

12.
Biol Chem ; 399(12): 1409-1419, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30138105

ABSTRACT

Histatins are histidine-rich peptides present in the saliva of humans and higher primates and have been implicated in the protection of the oral cavity. Histatin 1 is one of the most abundant histatins and recent reports show that it has a stimulating effect on cellular adherence, thereby suggesting a role in maintaining the quality of the epithelial barrier and stimulating mesenchymal-to-epithelial transition. Here we summarize these findings and discuss them in the context of previous reports. The recent findings also provide new insights in the physiological functions of histatin 1, which are discussed here. Furthermore, we put forward a possible role of histatin 1 in various pathologies and its potential function in clinical applications.


Subject(s)
Epithelial-Mesenchymal Transition , Histatins/metabolism , Amino Acid Sequence , Cell Adhesion , Histatins/chemistry , Histatins/genetics , Humans
13.
Biochem Biophys Rep ; 13: 83-92, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29387813

ABSTRACT

Emerging evidence suggests that dysfunction of the ubiquitin-proteasome system is involved in the pathogenesis of numerous senile degenerative diseases including retinal disorders. The aim of this study was to assess whether there is a link between proteasome regulation and retinal pigment epithelium (RPE)-mediated expression of extracellular matrix genes. For this purpose, human retinal pigment epithelial cells (ARPE-19) were treated with different concentrations of transforming growth factor-ß (TGFß), connective tissue growth factor (CTGF), interferon-γ (IFNγ) and the irreversible proteasome inhibitor epoxomicin. First, cytotoxicity and proliferation assays were carried out. The expression of proteasome-related genes and proteins was assessed and proteasome activity was determined. Then, expression of fibrosis-associated factors fibronectin (FN), fibronectin EDA domain (FN EDA), metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinases-1 (TIMP-1) and peroxisome proliferator-associated receptor-γ (PPARγ) was assessed. The proteasome inhibitor epoxomicin strongly arrested cell cycle progression and down-regulated TGFß gene expression, which in turn was shown to induce expression of pro-fibrogenic genes in ARPE-19 cells. Furthermore, epoxomicin induced a directional shift in the balance between MMP-2 and TIMP-1 and was associated with down-regulation of transcription of extracellular matrix genes FN and FN-EDA and up-regulation of the anti-fibrogenic factor PPARγ. In addition, both CTGF and TGFß were shown to affect expression of proteasome-associated mRNA and protein levels. Our results suggest a link between proteasome activity and pro-fibrogenic mechanisms in the RPE, which could imply a role for proteasome-modulating agents in the treatment of retinal disorders characterized by RPE-mediated fibrogenic responses.

14.
Sci Rep ; 8(1): 1405, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29362455

ABSTRACT

Many neurodegenerative diseases, such as Huntington's disease, are hallmarked by the formation of intracellular inclusion bodies (IBs) that are decorated with ubiquitin, proteasomes and chaperones. The apparent enrichment of ubiquitin and components involved in protein quality control at IBs suggests local ubiquitin-dependent enzymatic activity. In this study, we examine recruitment of ubiquitin to IBs of polyglutamine-expanded huntingtin fragments (mHtt) by using synthesized TAMRA-labeled ubiquitin moieties. We show that intracellular TAMRA-ubiquitin is dynamic at mHtt IBs and is incorporated into poly-ubiquitin chains of intracellular substrates, such as mHtt, in a conjugation-dependent manner. Furthermore, we report that mHtt IBs recruit catalytically active enzymes involved in (de)-ubiquitination processes based on novel activity-based probes. However, we also find that the overexpression of the GFP-ubiquitin reporter, unlike the endogenous ubiquitin and TAMRA-ubiquitin, becomes irreversibly sequestered as a ring-like structure around the mHtt IBs, suggesting a methodical disadvantage of GFP-tagged ubiquitin. Our data provide supportive evidence for dynamic recruitment of ubiquitin and ubiquitin (de)-conjugating activity at mHtt initiated IBs.


Subject(s)
Huntingtin Protein/metabolism , Mutation , Rhodamines/chemistry , Ubiquitin/metabolism , Animals , Catalysis , Cell Line , Cytoplasm/metabolism , Humans , Huntingtin Protein/chemistry , Huntingtin Protein/genetics , Inclusion Bodies/metabolism , Mice , Rats , Ubiquitin/chemistry , Ubiquitination
15.
Ophthalmic Res ; 59(2): 98-109, 2018.
Article in English | MEDLINE | ID: mdl-29073609

ABSTRACT

INTRODUCTION: Curcumin has multiple biological effects including the modulation of protein homeostasis by the ubiquitin-proteasome system. The purpose of this study was to assess the in vitro cytotoxic and oxidative effects of nano-curcumin and standard curcumin and characterize their effects on proteasome regulation in retinal pigment epithelial (RPE) cells. METHODS: Viability, cell cycle progression, and reactive oxygen species (ROS) production were determined after treatment with nano-curcumin or curcumin. Subsequently, the effects of nano-curcumin and curcumin on proteasome activity and the gene and protein expression of proteasome subunits PA28α, α7, ß5, and ß5i were assessed. RESULTS: Nano-curcumin (5-100 µM) did not show significant cytotoxicity or anti-oxidative effects against H2O2-induced oxidative stress, whereas curcumin (≥10 µM) was cytotoxic and a potent inducer of ROS production. Both nano-curcumin and curcumin induced changes in proteasome-mediated proteolytic activity characterized by increased activity of the proteasome subunits ß2 and ß5i/ß1 and reduced activity of ß5/ß1i. Likewise, nano-curcumin and curcumin affected mRNA and protein levels of household and immunoproteasome subunits. CONCLUSIONS: Nano-curcumin is less toxic to RPE cells and less prone to induce ROS production than curcumin. Both nano-curcumin and curcumin increase proteasome-mediated proteolytic activity. These results suggest that nano-curcumin may be regarded as a proteasome-modulating agent of limited cytotoxicity for RPE cells.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Curcumin/pharmacology , Proteasome Endopeptidase Complex/metabolism , Retinal Pigment Epithelium/drug effects , Cell Cycle/drug effects , Cell Survival/drug effects , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Oxidative Stress/drug effects , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(3): 793-800, 2017 03.
Article in English | MEDLINE | ID: mdl-28040507

ABSTRACT

Most neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease are hallmarked by aggregate formation of disease-related proteins. In various of these diseases transfer of aggregation-prone proteins between neurons and between neurons and glial cells has been shown, thereby initiating aggregation in neighboring cells and so propagating the disease phenotype. Whereas this prion-like transfer is well studied in Alzheimer's and Parkinson's disease, only a few studies have addressed this potential mechanism in Huntington's disease. Here, we present an overview of in vitro and in vivo methodologies to study release, intercellular transfer and uptake of aggregation-prone protein fragments in Huntington's disease models.


Subject(s)
Huntingtin Protein/metabolism , Huntington Disease/metabolism , Neuroglia/metabolism , Neurons/metabolism , Prions/metabolism , Protein Aggregation, Pathological/metabolism , Animals , Humans , Huntingtin Protein/analysis , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Mutation , Neuroglia/pathology , Neurons/pathology , Prions/analysis , Prions/genetics , Protein Aggregates , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Transport
17.
Glia ; 65(1): 50-61, 2017 01.
Article in English | MEDLINE | ID: mdl-27615381

ABSTRACT

Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disorder that is caused by a CAG expansion in the Huntingtin (HTT) gene, leading to HTT inclusion formation in the brain. The mutant huntingtin protein (mHTT) is ubiquitously expressed and therefore nuclear inclusions could be present in all brain cells. The effects of nuclear inclusion formation have been mainly studied in neurons, while the effect on glia has been comparatively disregarded. Astrocytes, microglia, and oligodendrocytes are glial cells that are essential for normal brain function and are implicated in several neurological diseases. Here we examined the number of nuclear mHTT inclusions in both neurons and various types of glia in the two brain areas that are the most affected in HD, frontal cortex, and striatum. We compared nuclear mHTT inclusion body formation in three HD mouse models that express either full-length HTT or an N-terminal exon1 fragment of mHTT, and we observed nuclear inclusions in neurons, astrocytes, oligodendrocytes, and microglia. When studying the frequency of cells with nuclear inclusions in mice, we found that half of the population of neurons contained nuclear inclusions at the disease end stage, whereas the proportion of GFAP-positive astrocytes and oligodendrocytes having a nuclear inclusion was much lower, while microglia hardly showed any nuclear inclusions. Nuclear inclusions were also present in neurons and all studied glial cell types in human patient material. This is the first report to compare nuclear mHTT inclusions in glia and neurons in different HD mouse models and HD patient brains. GLIA 2016;65:50-61.


Subject(s)
Huntingtin Protein/metabolism , Huntington Disease/genetics , Neuroglia/metabolism , Neurons/metabolism , Animals , Astrocytes/metabolism , Brain/cytology , Brain/metabolism , Disease Models, Animal , Female , Huntington Disease/metabolism , Male , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism
18.
Cell Mol Life Sci ; 73(21): 4101-20, 2016 11.
Article in English | MEDLINE | ID: mdl-27141937

ABSTRACT

Glial fibrillary acidic protein (GFAP) is the characteristic intermediate filament (IF) protein in astrocytes. Expression of its main isoforms, GFAPα and GFAPδ, varies in astrocytes and astrocytoma implying a potential regulatory role in astrocyte physiology and pathology. An IF-network is a dynamic structure and has been functionally linked to cell motility, proliferation, and morphology. There is a constant exchange of IF-proteins with the network. To study differences in the dynamic properties of GFAPα and GFAPδ, we performed fluorescence recovery after photobleaching experiments on astrocytoma cells with fluorescently tagged GFAPs. Here, we show for the first time that the exchange of GFP-GFAPδ was significantly slower than the exchange of GFP-GFAPα with the IF-network. Furthermore, a collapsed IF-network, induced by GFAPδ expression, led to a further decrease in fluorescence recovery of both GFP-GFAPα and GFP-GFAPδ. This altered IF-network also changed cell morphology and the focal adhesion size, but did not alter cell migration or proliferation. Our study provides further insight into the modulation of the dynamic properties and functional consequences of the IF-network composition.


Subject(s)
Astrocytes/cytology , Cell Shape , Focal Adhesions/metabolism , Glial Fibrillary Acidic Protein/metabolism , Intermediate Filaments/metabolism , Actins/metabolism , Adult , Aged , Astrocytes/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , Female , Green Fluorescent Proteins/metabolism , Humans , Imaging, Three-Dimensional , Microtubules/metabolism , Nestin/metabolism , Protein Isoforms/metabolism , Vimentin/metabolism
19.
Mol Cell Proteomics ; 14(8): 2177-93, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26041847

ABSTRACT

Tripeptidyl peptidase II (TPP2) is a serine peptidase involved in various biological processes, including antigen processing, cell growth, DNA repair, and neuropeptide mediated signaling. The underlying mechanisms of how a peptidase can influence this multitude of processes still remain unknown. We identified rapid proteomic changes in neuroblastoma cells following selective TPP2 inhibition using the known reversible inhibitor butabindide, as well as a new, more potent, and irreversible peptide phosphonate inhibitor. Our data show that TPP2 inhibition indirectly but rapidly decreases the levels of active, di-phosphorylated extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the nucleus, thereby down-regulating signal transduction downstream of growth factors and mitogenic stimuli. We conclude that TPP2 mediates many important cellular functions by controlling ERK1 and ERK2 phosphorylation. For instance, we show that TPP2 inhibition of neurons in the hippocampus leads to an excessive strengthening of synapses, indicating that TPP2 activity is crucial for normal brain function.


Subject(s)
Aminopeptidases/metabolism , Cell Nucleus/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Serine Endopeptidases/metabolism , Aminopeptidases/antagonists & inhibitors , Animals , Cell Line , Cell Nucleus/drug effects , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , Gene Ontology , Humans , Inhibitory Concentration 50 , Isotope Labeling , Mice , Models, Biological , Neurites/drug effects , Neurites/metabolism , Neuronal Plasticity/drug effects , Phosphorylation/drug effects , Protein Phosphatase 2/metabolism , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism
20.
Front Mol Neurosci ; 8: 1, 2015.
Article in English | MEDLINE | ID: mdl-25674046

ABSTRACT

Protein conformation diseases, including polyglutamine (polyQ) diseases, result from the accumulation and aggregation of misfolded proteins. Huntington's disease (HD) is one of nine diseases caused by an expanded polyQ repeat within the affected protein and is hallmarked by intracellular inclusion bodies composed of aggregated N-terminal huntingtin (Htt) fragments and other sequestered proteins. Fluorescence microscopy and filter trap assay are conventional methods to study protein aggregates, but cannot be used to analyze the presence and levels of post-translational modifications of aggregated Htt such as ubiquitination. Ubiquitination of proteins can be a signal for degradation and intracellular localization, but also affects protein activity and protein-protein interactions. The function of ubiquitination relies on its mono- and polymeric isoforms attached to protein substrates. Studying the ubiquitination pattern of aggregated Htt fragments offers an important possibility to understand Htt degradation and aggregation processes within the cell. For the identification of aggregated Htt and its ubiquitinated species, solubilization of the cellular aggregates is mandatory. Here we describe methods to identify post-translational modifications such as ubiquitination of aggregated mutant Htt. This approach is specifically described for use with mammalian cell culture and is suitable to study other disease-related proteins prone to aggregate.

SELECTION OF CITATIONS
SEARCH DETAIL
...