Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc ; 1(8): e214, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34387945

ABSTRACT

Immunofluorescence labeling and microscopy offer a highly specific means to visualize proteins or other molecular species in a sample by labeling target antigens with fluorescent probes. These fluorescent probes can then be visualized using a fluorescence microscope, allowing their relative spatial relationships to be determined. Due to spectral overlap of common fluorophores, however, it can be challenging to analyze more than three antigens in a single sample with standard imaging approaches. This article describes multiplexed labeling and imaging of four target antigens through the use of a long-Stokes-shift fluorophore-a fluorophore with an unusually large gap between its excitation and emission maxima-in tandem with three conventional fluorophores. This combination allows for multiplexed imaging of four antigens in a single sample with excellent spectral discrimination suitable for sensitive analyses using standard imaging hardware. Particular advantages of this approach are its flexibility in terms of target antigens and the lack of any specialized procedures, reagents, or equipment beyond the commercially available labeling reagent coupled to the long-Stokes-shift fluorophore. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Four-probe immunofluorescence labeling Basic Protocol 2: Four-probe immunofluorescence imaging.


Subject(s)
Fluorescent Dyes , Proteins , Ionophores , Microscopy, Fluorescence
2.
Cell Rep ; 36(3): 109399, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34289347

ABSTRACT

The pathogenic mechanism by which dominant mutations in VCP cause multisystem proteinopathy (MSP), a rare neurodegenerative disease that presents as fronto-temporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), remains unclear. To explore this, we inactivate VCP in murine postnatal forebrain neurons (VCP conditional knockout [cKO]). VCP cKO mice have cortical brain atrophy, neuronal loss, autophago-lysosomal dysfunction, and TDP-43 inclusions resembling FTLD-TDP pathology. Conditional expression of a single disease-associated mutation, VCP-R155C, in a VCP null background similarly recapitulates features of VCP inactivation and FTLD-TDP, suggesting that this MSP mutation is hypomorphic. Comparison of transcriptomic and proteomic datasets from genetically defined patients with FTLD-TDP reveal that progranulin deficiency and VCP insufficiency result in similar profiles. These data identify a loss of VCP-dependent functions as a mediator of FTLD-TDP and reveal an unexpected biochemical similarity with progranulin deficiency.


Subject(s)
DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/pathology , Neurons/metabolism , Valosin Containing Protein/metabolism , Aged , Alleles , Animals , Atrophy , Autophagosomes/metabolism , Behavior, Animal , Brain/pathology , Frontotemporal Lobar Degeneration/genetics , Gliosis/pathology , Humans , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Nerve Degeneration/pathology , Neurons/pathology , Proteomics , Transcriptome/genetics
3.
STAR Protoc ; 2(1): 100268, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33490984

ABSTRACT

Synapses are crucial to brain function and frequent disease targets, but current analysis methods cannot report on individual synaptic components in situ or present barriers to widespread adoption. SEQUIN was developed to address this challenge. SEQUIN utilizes a widely available super-resolution platform in tandem with image processing and analysis to quantify synaptic loci over large regions of brain and characterize their molecular and nanostructural properties at the individual and population level. This protocol describes quantification of synaptic loci using SEQUIN. For additional details on the use and execution of this protocol, please refer to Sauerbeck et al. (2020).


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Image Processing, Computer-Assisted , Synapses/metabolism , Animals , Mice
4.
Neuron ; 107(2): 257-273.e5, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32392471

ABSTRACT

The brain's complex microconnectivity underlies its computational abilities and vulnerability to injury and disease. It has been challenging to illuminate the features of this synaptic network due to the small size and dense packing of its elements. Here, we describe a rapid, accessible super-resolution imaging and analysis workflow-SEQUIN-that quantifies central synapses in human tissue and animal models, characterizes their nanostructural and molecular features, and enables volumetric imaging of mesoscale synaptic networks without the production of large histological arrays. Using SEQUIN, we identify cortical synapse loss resulting from diffuse traumatic brain injury, a highly prevalent connectional disorder. Similar synapse loss is observed in three murine models of Alzheimer-related neurodegeneration, where SEQUIN mesoscale mapping identifies regional synaptic vulnerability. These results establish an easily implemented and robust nano-to-mesoscale synapse quantification and characterization method. They furthermore identify a shared mechanism-synaptopathy-between Alzheimer neurodegeneration and its best-established epigenetic risk factor, brain trauma.


Subject(s)
Brain Injuries, Traumatic/pathology , Central Nervous System/diagnostic imaging , Nanostructures/ultrastructure , Neural Pathways/diagnostic imaging , Neural Pathways/ultrastructure , Neuroimaging/methods , Synapses/ultrastructure , Animals , Brain Mapping , Central Nervous System/ultrastructure , Cerebral Cortex/pathology , Humans , Mammals , Mice
5.
Neurosci Lett ; 661: 126-131, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-28982595

ABSTRACT

BACKGROUND AND PURPOSE: Ischemic stroke produces significant morbidity and mortality, and acute interventions are limited by short therapeutic windows. Novel approaches to neuroprotection and neurorepair are necessary. HuR is an RNA-binding protein (RBP) which modulates RNA stability and translational efficiency of genes linked to ischemic stroke injury. METHODS: Using a transgenic (Tg) mouse model, we examined the impact of ectopic HuR expression in astrocytes on acute injury evolution after transient middle cerebral artery occlusion (tMCAO). RESULTS: HuR transgene expression was detected in astrocytes in perilesional regions and contralaterally. HuR Tg mice did not improve neurologically 72h after injury, whereas littermate controls did. In Tg mice, increased cerebral vascular permeability and edema were observed. Infarct volume was not affected by the presence of the transgene. CONCLUSIONS: Ectopic expression of HuR in astrocytes worsens outcome after transient ischemic stroke in mice in part by increasing vasogenic cerebral edema. These findings suggest that HuR could be a therapeutic target in cerebral ischemia/reperfusion.


Subject(s)
Brain Edema/metabolism , Brain Ischemia/metabolism , ELAV-Like Protein 1/metabolism , Infarction, Middle Cerebral Artery/metabolism , Recovery of Function/physiology , Animals , Brain/metabolism , Brain/physiopathology , Brain Edema/genetics , Brain Ischemia/genetics , Disease Models, Animal , ELAV-Like Protein 1/genetics , Infarction, Middle Cerebral Artery/genetics , Mice, Transgenic , Recovery of Function/genetics , Reperfusion Injury/metabolism , Stroke/physiopathology
6.
Brain Res ; 1639: 200-13, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26995494

ABSTRACT

Estrogens have previously been shown to protect the brain against acute ischemic insults, by potentially augmenting cerebrovascular function after ischemic stroke. The current study hypothesized that treatment with sustained release of high-dose 17ß-estradiol (E2) at the time of reperfusion from middle cerebral artery occlusion (MCAO) in rats would attenuate reperfusion injury, augment post-stroke angiogenesis and cerebral blood flow, and attenuate lesion volume. Female Wistar rats underwent ovariectomy, followed two weeks later by transient, two-hour right MCAO (tMCAO) and treatment with E2 (n=13) or placebo (P; n=12) pellets starting at reperfusion. E2 treatment resulted in significantly smaller total lesion volume, smaller lesions within striatal and cortical brain regions, and less atrophy of the ipsilateral hemisphere after six weeks of recovery. E2-treated animals exhibited accelerated recovery of contralateral forelimb sensorimotor function in the cylinder test. Magnetic resonance imaging (MRI) showed that E2 treatment reduced the formation of lesion cysts, decreased lesion volume, and increased lesional cerebral blood flow (CBF). K(trans), a measure of vascular permeability, was increased in the lesions. This finding, which represents lesion neovascularization, was not altered by E2 treatment. Ischemic stroke-related angiogenesis and vessel formation was confirmed with immunolabeling of brain tissue and was not altered with E2 treatment. In summary, E2 treatment administered immediately following reperfusion significantly reduced lesion size, cyst formation, and brain atrophy while improving lesional CBF and accelerating recovery of functional deficits in a rat model of ischemic stroke.


Subject(s)
Brain Ischemia/drug therapy , Estradiol/administration & dosage , Neuroprotective Agents/administration & dosage , Reperfusion Injury/drug therapy , Stroke/drug therapy , Animals , Brain/diagnostic imaging , Brain/drug effects , Brain/pathology , Brain/physiopathology , Brain Ischemia/diagnostic imaging , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Implants , Estradiol/blood , Female , Forelimb/physiopathology , Motor Activity/drug effects , Motor Activity/physiology , Neuroprotective Agents/blood , Ovariectomy , Random Allocation , Rats, Wistar , Recovery of Function/drug effects , Recovery of Function/physiology , Reperfusion Injury/diagnostic imaging , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Stroke/diagnostic imaging , Stroke/pathology , Stroke/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...