Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Foods ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928797

ABSTRACT

In the current study, fermented whey-based beverage models with different levels of blackcurrant juice (0; 10; 20; 100% (w/w)) and furcellaran (0.25% and 0.50% (w/w)) were produced and evaluated. Physicochemical, rheological, mechanical vibration damping, and sensory analyses were performed. During fermentation (48 h), the values of pH, density, and total soluble solids decreased. On the other hand, the ethanol content during fermentation increased up to a final content in the range of 0.92-4.86% (v/v). The addition of furcellaran was effective in terms of sediment content decrease to a level of 0.25% (w/w). In general, the samples exhibited non-Newtonian pseudoplastic behaviour. The sensory analysis revealed that the sample with a composition of 20% (w/w) blackcurrant juice and 0.50% (w/w) furcellaran received the highest score.

2.
Foods ; 12(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37761077

ABSTRACT

The purpose of this work was to evaluate the selected physicochemical, rheological, and sensory properties of a new whey-enriched carrot juice beverage (carrot juice: whey ratios of 100:0; 95:5; 85:15; 75:25; 65:35) fermented with milk or water kefir starter cultures over a storage period of 21 days (at 4 ± 1 °C). In general, for all tested samples, the values of total soluble solids, pH, and density decreased with increasing storage time. In contrast, the values of ethanol, degree of fermentation, and total dissolved solids increased with the prolongation of the storage time. Furthermore, it was found that all the model samples exhibited pseudoplastic behavior. Based on the sensory analysis performed, samples containing 25% (w/w) whey were evaluated as the most acceptable. Last but not least, the present study can serve as a basis for optimizing the manufacturing technology of a novel fermented vegetable beverage enriched with whey.

3.
Foods ; 12(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37174373

ABSTRACT

The decarboxylation of the corresponding amino acids by microorganisms leads to the formation of biogenic amines (BAs). From a toxicological point of view, BAs can cause undesirable physiological effects in sensitive individuals, particularly if their metabolism is blocked or genetically altered. The current study aimed to monitor and evaluate the content of eight biogenic amines (BAs) in 232 samples of wines (white, rosé, red) produced in the Central European region (Zone B). White wines (180 samples), rosé wines (17 samples), and red wines (35 samples) were analyzed. High-performance liquid chromatography equipped with a ultraviolet-visible diode array detector (UV/VIS DAD) was applied to identify and quantify the BAs present in wines. In general, histamine (HIS), tyramine (TYM), putrescine (PUT), cadaverine (CAD), phenylethylamine (PEA), spermine (SPN) and spermidine (SPD) were detected in all tested wine samples. Tryptamine (TRM) was not present in any of the samples examined. In white and red wines, SPD, TYM, and PUT were most often detected. Regarding rosé wines, the three major BAs were SPN, TYM, and CAD. The BA content in red wines was generally higher than in rosé and white wines. However, HIS concentrations above the recommended limit of 10 mg/L were detected in 9% of the red wine samples. In addition, alarming levels of PUT, HIS, TYM, and PEA, with serious potential impact on consumer health, were recorded in two red wine samples. On the whole, the presence and concentrations of BAs in wine should be constantly evaluated, primarily because alcohol intensifies the hazardous effects of BAs.

SELECTION OF CITATIONS
SEARCH DETAIL