Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ScientificWorldJournal ; 2014: 730149, 2014.
Article in English | MEDLINE | ID: mdl-24688424

ABSTRACT

In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.


Subject(s)
Carbon Dioxide/chemistry , Ozone/chemistry , Soil/chemistry , Ultraviolet Rays
2.
Chirality ; 26(1): 1-20, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24249143

ABSTRACT

Decontamination of polluted soils using plants is based on the ability of plant species (including transgenic plants) to enhance bioavailability of pollutants in the rhizosphere and support growth of pollutant-degrading microorganisms via root exudation and plant species-specific composition of the exudates. In this work, we review current knowledge of enantiomers of low-molecular-weight (LMW) organic compounds with emphasis on their use in phytoremediation. Many research studies have been performed to search for plants suitable for decontamination of polluted soils. Nevertheless, the natural occurrence of L- versus D-enantiomers of dominant compounds of plant root exudates which play different roles in the complexation of heavy metals, chemoattraction, and support of pollutant-degrading microorganisms were not included in these studies. D-enantiomers of aliphatic organic acids and amino acids or L-enantiomers of carbohydrates occur in high concentrations in root exudates of some plant species, especially under stress, and are less stimulatory for plants to extract heavy metals or for rhizosphere microflora to degrade pollutants compared with L-enantiomers (organic acids and amino acids) or D-carbohydrates. Determining the ratio of L- versus D-enantiomers of organic compounds as a criterion of plant suitability for decontamination of polluted soils and development of other types of bioremediation technologies need to be subjects of future research.


Subject(s)
Metals, Heavy/chemistry , Organic Chemicals , Plant Roots/microbiology , Biodegradation, Environmental , Carbohydrate Metabolism , Coordination Complexes/chemistry , Malates/chemistry , Stereoisomerism , Tartrates/chemistry
3.
ScientificWorldJournal ; 2013: 524239, 2013 Nov 10.
Article in English | MEDLINE | ID: mdl-24319374

ABSTRACT

Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.


Subject(s)
Acids/analysis , Carbohydrates/analysis , Fatty Acids/analysis , Soil/chemistry , Vitamins/analysis , Agriculture , Metals, Heavy/analysis , Volatile Organic Compounds/analysis
4.
Chirality ; 25(12): 823-31, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24114978

ABSTRACT

Pipecolic acid naturally occurs in microorganisms, plants, and animals, where it plays many roles, including the interactions between these organisms, and is a key constituent of many natural and synthetic bioactive molecules. This article provides a review of current knowledge on the natural occurrence of pipecolic acid and the known and potential significance of its L- and D-enantiomers in different scientific disciplines. Knowledge gaps with perspectives for future research identified within this article include the roles of the L- versus the D-enantiomer of pipecolic acid in plant resistance, nutrient acquisition, and decontamination of polluted soils, as well as rhizosphere ecology and medical issues.


Subject(s)
Pipecolic Acids/chemistry , Pipecolic Acids/classification , Pipecolic Acids/chemical synthesis , Plants/chemistry , Stereoisomerism
5.
ScientificWorldJournal ; 2012: 250805, 2012.
Article in English | MEDLINE | ID: mdl-22701351

ABSTRACT

The aim of this study is to present a new method for determining the root-derived extracellular acid phosphomonoesterase (EAPM) activity fraction within the total EAPM activity of soil. EAPM activity was determined for roots, organic and mineral soil. Samples were collected using paired PVC cylinders, inserted to a depth of 15 cm, within seven selected forest stands. Root-derived EAPM formed between 4 and18% of the total EAPM activity of soil from forests of differing maturity. A new approach, presented in this work, enables separation of root-derived EAPM activity from total soil EAPM. Separation of root-derived EAPM from soil provides a better understanding of its role in P-cycling in terrestrial ecosystems. The method presented in this work is a first step towards the separation of root- and microbe-derived EAPM in soils, which are thought to possess different kinetic properties and different sensitivity to environmental change.


Subject(s)
Ecosystem , Phosphodiesterase I/analysis , Plant Roots/enzymology , Soil/chemistry , Trees/enzymology , Czech Republic
6.
Sci Total Environ ; 409(20): 4489-95, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21782215

ABSTRACT

Phytoremediation is considered as a promising and cost-effective method to enhance bioremediation of polluted soils. Exudation of plant root secondary metabolites similar to organic pollutants may induce the expression of microbial degradative enzymes and favour cometabolism of xenobiotics. We investigated the contribution of Miscanthus x giganteus root exudates in the biostimulation of PAH-degradation. This perennial grass was chosen because of its capability to grow on polluted soils and its high biomass production for non-food purposes. First, the impact of cometabolism phenomena was evaluated on the selective enrichment of pyrene-degrading bacterial consortia. The identification of each isolated strains following incubation with pyrene only, "pyrene+phenanthrene", "pyrene+salycilate" or "pyrene+diesel fuel" showed a varying bacterial diversity and pyrene-degrading ability, depending on the co-substrate used. Then, a microplate assay was designed, based on the simultaneous measurement of bacterial consortia growth and degradation activity, in the presence of PAH and total root exudates. Results showed that i) the addition of root exudates was efficient for promoting bacterial growth, ii) but a selective enrichment of PAH-degraders compared to aliphatic ones could be clearly demonstrated, thereby conducing to an enhanced PAH catabolism. The identification of plant secondary metabolites showed the presence of a broad range of flavonoid-derived compounds that could play a role in cometabolic processes. Microplate assays with the two major molecules, quercetin and rutin, suggested a partial involvement of these compounds in biostimulation processes. Further investigations with the other identified secondary metabolites (apigenin, isovitexin, catechin, gallic and caffeic acid) should provide more information on the exudate-PAH cometabolic degradation phenomenon.


Subject(s)
Biodegradation, Environmental , Plant Exudates/metabolism , Poaceae/growth & development , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Poaceae/metabolism , Poaceae/microbiology , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Proteobacteria/growth & development , Proteobacteria/isolation & purification , Soil Microbiology , Soil Pollutants/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...