Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 695710, 2021.
Article in English | MEDLINE | ID: mdl-34395403

ABSTRACT

The preparation of unique wet and dry wound dressing products derived from unprocessed human amniotic membrane (UP-HAM) is described. The UP-HAM was decellularized, and the constituent proteins were cross-linked and stabilized before being trimmed and packed in sterile Nucril-coated laminated aluminium foil pouches with isopropyl alcohol to manufacture processed wet human amniotic membrane (PW-HAM). The dry type of PD-HAM was prepared by decellularizing the membrane, UV irradiating it, lyophilizing/freeze-drying it, sterilizing it, and storing it at room temperature. The UP-HAM consists of a translucent yellowish mass of flexible membranes with an average thickness of 42 µm. PW-HAM wound dressings that had been processed, decellularized, and dehydrated had a thinner average thickness of 30 µm and lacked nuclear-cellular structures. Following successful decellularization, discrete bundle of fibrous components in the stromal spongy layers, microvilli and reticular ridges were still evident on the surface of the processed HAM, possibly representing the location of the cells that had been removed by the decellularization process. Both wet and dry HAM wound dressings are durable, portable, have a shelf life of 3-5 years, and are available all year. A slice of HAM dressing costs 1.0 US$/cm2. Automation and large-scale HAM membrane preparation, as well as storage and transportation of the dressings, can all help to establish advanced technologies, improve the efficiency of membrane production, and reduce costs. Successful treatment of wounds to the cornea of the eye was achieved with the application of the HAM wound dressings. The HAM protein analysis revealed 360 µg proteins per gram of tissue, divided into three main fractions with MWs of 100 kDa, 70 kDa, and 14 kDa, as well as seven minor proteins, with the 14 kDa protein displaying antibacterial properties against human pathogenic bacteria. A wide range of antibacterial activity was observed after treatment with 75 µg/ml zinc oxide nanoparticles derived from human amniotic membrane proteins (HAMP-ZnO NP), including dose-dependent biofilm inhibition and inhibition of Gram-positive (S. aureus, S. mutans, E. faecalis, and L. fusiformis) and Gram-negative bacteria (S. sonnei, P. aeruginosa, P. vulgaris, and C. freundii).

2.
Article in English | MEDLINE | ID: mdl-34375731

ABSTRACT

Effect of selenium and acidification in freshwater environment was assessed solitary but no reports are available on the impacts of both factors act together. In the present study, effects of combined simultaneous exposure to selenium (Se) and low pH were assessed in Mozambique tilapia, Oreochromis mossambicus. Responses were measured based on antioxidant defenses (enzymatic SOD, CAT, GPx and non-enzymatic GSH), biotransformation enzyme (GST), metallothionein levels (MT), oxidative damage (LPO, CP), Na+/K+-ATPase (NKA) activity in gills and liver tissues and neurotoxicity (acetylcholinesterase, AChE) response in brain tissue. Fish were exposed to combined treatment at different pH levels (7.5, control (optimum pH for tilapia growth); 5.5, low pH) and Se concentrations (0, 10, and 100 µg L-1). Toxicity levels of Se were not significantly different under control and low pH indicating that pH did not affect Se toxicity. Levels of GSH and MT were enhanced in Se-exposed fish at both pH. Combined effects of high Se concentration and low pH decreased SOD and CAT activities and increased those of GPx and GST. However, organisms were not able to prevent cellular damage (LPO and CP), indicating a condition of oxidative stress. Furthermore, inhibition of Na+/K+-ATPase activity was showed. Additionally, neurotoxicity effect was observed by inhibition of cholinesterase activity in organisms exposed to Se at both pH conditions. As a result, the combined stress of selenium and freshwater acidification has a slight impact on antioxidant defense mechanisms while significantly inhibiting cholinesterase and Na+/K + -ATPase activity in fish. The mechanisms of freshwater acidification mediating the toxic effects of trace non-metal element on freshwater fish need to investigate further.


Subject(s)
Acids/toxicity , Selenium/toxicity , Tilapia/growth & development , Animals , Antioxidants/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Fish Diseases/chemically induced , Fish Diseases/metabolism , Fish Diseases/pathology , Fresh Water , Gills/drug effects , Gills/metabolism , Gills/pathology , Hydrogen-Ion Concentration , Lipid Peroxidation , Liver/drug effects , Liver/metabolism , Liver/pathology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/veterinary , Oxidative Stress/drug effects , Tilapia/metabolism , Water Pollutants, Chemical/toxicity
3.
J Photochem Photobiol B ; 199: 111620, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31522113

ABSTRACT

Current scenario of bio-nanotechnology, successfully fabrication of ultrafine titanium dioxide nanoparticles (TiO2NPs) using various biological protein sources for the multipurpose targets. The present research report involves synthesis of TiO2NPs using antimicrobial peptide (AMP) crustin (Cr). Crustin previously purified from the blue crab, Portunus pelagicus haemolymph, by blue Sepharose CL-6B matrix assisted affinity column chromatography. Synthesized Cr-TiO2NPs was physico-chemically characterized by UV-Visible spectroscopy (UV-Visible), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High-resolution transmission electron microscopy (HR-TEM) and zeta potential examination. X-ray diffraction analysis for crystalline nature and phase identification of titanium dioxide nanoparticles was absorbed. Functional groups were found through FTIR ranges between 1620 and 1700 cm-1. HR-TEM analysis showed that the synthesized Cr-TiO2NPs tetragonal shape and sizes ranging from 10 to 50 nm. Finally, the surface charge of the Cr-TiO2NPs was confirmed through zeta potential analysis. Furthermore, the characterized Cr-TiO2NPs exhibited good biofilm inhibition against GPB - S. mutans (Gram Positive Bacteria- Streptococcus mutans), GNB - P. vulgaris (Gram Negative Bacteria- Proteus vulgaris) and fungal Candida albicans. Moreover, photocatalysis demonstrated that the Cr-TiO2NPs was effectively explored the degradation of dyes. The results suggest that Cr-TiO2NPs is an excellent bactericidal, fungicidal and photocatalytic agent that can be supportively used for biomedical and industrial applications.


Subject(s)
Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Insecticides/chemistry , Nanocapsules/chemistry , Photochemical Processes , Titanium/chemistry , Animals , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Biofilms , Brachyura/chemistry , Candida albicans/drug effects , Catalysis , Cell Survival/drug effects , Culicidae , Drug Liberation , Humans , Insecticides/pharmacology , Larva/drug effects , Light , Molecular Structure , Proteus vulgaris/drug effects , Streptococcus mutans/drug effects
4.
J Photochem Photobiol B ; 192: 55-67, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30685584

ABSTRACT

Arboviral diseases and microbial pathogens resistant to commercially available drugs are on the rise. Herein, a facile microbial-based approach was developed to synthesize selenium nanowires (Se NWs) using microbial exopolymer (MEP) extracted from the Bacillus licheniformis (probiotic bacteria). MEP-Se NWs were characterized using UV-Visible, XRD, FTIR, HR-TEM, FE-SEM and EDX. An UV-Visible peak was detected at 330 nm while XRD spectrum data pointed out the crystalline nature of MEP-Se NWs. FTIR spectrum revealed functional groups with strong absorption peaks in the range 3898.52-477.97 cm-1. FE-SEM and HR-TEM revealed that the obtained structures were nanowires of 10-30 nm diameter. Se presence was confirmed by EDX analysis. MEP-Se NWs at 100 µg/ml highly suppressed the growth of both Gram (-) and Gram (+) bacteria. Further, microscopic analysis evidenced that 75 µg/ml MEP-Se NWs suppressed biofilm formation. Hemolytic assays showed that MEP-Se NWs were moderately cytotoxic. In addition, LC50 values lower than 10 µg/ml were estimated testing MEP-Se NWs on both Aedes aegypti and Culex quinquefasciatus 3rd instar larvae. Morphological and histological techniques were used to elucidate on the damages triggered in mosquito tissues, with special reference to midgut, post-exposure to MEP-Se NWs. Therefore, based on our findings, MEP-Se NWs can be considered for entomological and biomedical applications, with special reference to the management of biofilm forming microbial pathogens and arbovirus mosquito vectors.


Subject(s)
Extracellular Polymeric Substance Matrix , Nanowires/chemistry , Selenium , Animals , Anti-Bacterial Agents/pharmacology , Arboviruses , Bacillus licheniformis/chemistry , Bacteria/drug effects , Biofilms/drug effects , Genetic Vectors , Larva/drug effects , Mosquito Vectors
5.
J Trace Elem Med Biol ; 51: 191-203, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30466931

ABSTRACT

Herein, we reported a method to synthesize selenium nanowires (Cr-SeNWs) relying to purified cysteine-rich antimicrobial peptide crustin in presence of ascorbic acid. Cr-SeNWs were characterized by UV-vis, XRD, FTIR and Raman spectroscopy, as well as SEM, HR-TEM and EDAX. The UV-vis spectroscopy peak was noted at 350 nm. XRD showed the crystalline nature of Cr-SeNWs through diffraction peaks observed 2θ at 12° and 28° corresponding to (020), and (241) lattice planes, respectively. HR-TEM results shed light on the size of Cr-SeNWs, ranging from 17 to 47 nm. Raman spectroscopy and EDAX analysis of Cr-SeNWs showed presence of 57% selenium element. Furthermore, Cr-SeNWs showed higher antimicrobial activity on Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) over Gram-negative ones (Pseudomonas aeruginosa, Escherichia coli). The zone of inhibition was larger on S. aureus (50 µg/ml = 4.0 mm, 75 µg/ml = 7.2 mm) and E. faecalis (50 µg/ml = 3.1 mm, 75 µg/ml = 5.1 mm), over P. aeruginosa (50 µg/ml = 2.1 mm, 75 µg/ml = 4.8 mm), E. coli (50 µg/ml = 1.3 mm, 75 µg/ml = 4.3 mm) bacteria. The antibiofilm activity of Cr-SeNWs was also investigated and biofilm reduction was observed at 75 µg/ml. In addition, Cr-SeNWs were highly effective as larvicides against Zika virus and Japanese encephalitis mosquito vectors, i.e., Culex quinquefasciatus and Culex tritaeniorhynchus, with LC50 values of 4.15 and 4.85 mg/l, respectively. The nanowire toxicity and internalization was investigated through confocal laser scanning microscopy and histological studies. To investigate the potential of Cr-SeNWs for real-world applications, we also evaluated Cr-SeNWs in hemolytic assays, showing no cytotoxicity till 5 mg/ml. Besides, higher antioxidant activity at the concentration at 100 µg/ml was noted, if compared with purified crustin. The strong antioxidant potential of this nanomaterial can be helpful to boost the shelf-life potential of Cr-SeNWs-based pesticides and antimicrobials.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Encephalitis, Japanese/drug therapy , Mosquito Vectors/drug effects , Nanowires/chemistry , Selenium/pharmacology , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Brachyura , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Selenium/chemistry , Staphylococcus aureus/drug effects
6.
Mol Immunol ; 101: 396-408, 2018 09.
Article in English | MEDLINE | ID: mdl-30071451

ABSTRACT

Marine organisms represent a huge source of novel compounds for the development of effective antimicrobial drugs. The present study focus on the purification of the antimicrobial peptide crustin from the haemolymph of the blue swimmer crab, Portunus pelagicus, by blue Sepharose CL-6B matrix assisted affinity column chromatography. Crustin showed a single band with a molecular mass of 17 kDa in SDS-PAGE analysis. The XRD analysis exhibited peaks at 32° and 45° while a distinct peak with a retention time of 1.8 min resulted in high performance liquid chromatography (HPLC) pointing out the crystalline nature and purity of crustin, respectively. Crustin purified from P. pelagicus (Pp-Cru) showed immunological activities, triggering encapsulation, phagocytosis on Sepharose beads and yeast (Saccharomyces cerevisiae) respectively. Furthermore, encapsulation of GFP tagged V. parahaemolyticus in Artemia salina and challenging study were assessed under CLSM and the potential of Pp-Cru was examined in vivo. In addition, the growth reduction and biofilm inhibition potential of Pp-Cru on Staphylococcus aureus, Enterococcus faecalis (Gram- positive bacteria) and Pseudomonas aeruginosa, Escherichia coli (Gram-negative bacteria) was evidenced by inverted and confocal laser scanning microscopic analysis, revealing that 100 µg/ml of Pp-Cru can disrupt the biofilm matrix thereby the thickness of biofilm was significantly reduced. Overall, the present investigation might provide a sensitive platform to realize the significant function of Pp-Cru in crustacean immune mechanism as well as its potential to bacterial growth inhibitor. The functional properties of purified Pp-Cru antimicrobial peptide may lead to a superior understanding of innate immune response in P. pelagicus species, which suggest the promising application for drug development in aquaculture.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Artemia/immunology , Artemia/microbiology , Biofilms/drug effects , Brachyura/chemistry , Green Fluorescent Proteins/metabolism , Immunity/drug effects , Vibrio parahaemolyticus/physiology , Agglutination Tests , Animals , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Artemia/drug effects , Hemolymph/drug effects , Hemolymph/metabolism , Microbial Sensitivity Tests , Monophenol Monooxygenase/metabolism , Phagocytosis/drug effects , Protein Structure, Secondary , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Spectroscopy, Fourier Transform Infrared , Survival Analysis , Vibrio parahaemolyticus/drug effects , X-Ray Diffraction
7.
Ecotoxicol Environ Saf ; 162: 147-159, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-29990726

ABSTRACT

Selenium (Se) is an essential trace-element that becomes toxic when present at high concentrations for aquatic organisms. The knowledge about the mechanism of Se toxicity in freshwater ecosystem is still poorly studied. Thus the aim of the present study was to assess the impact of environmentally relevant concentrations of Se toxicity: 5, 10, 25, 50 and 100 µg/L or water only (control) for periods of 96 hour (h) to test for Se accumulation (gill, liver and brain), its effects on enzymatic and non-enzymatic antioxidant defenses (gill and liver), oxidative stress effects on lipid, protein (gill and liver), DNA (liver) and inhibition of AchE (brain) activity were measured in Mozambique tilapia, Oreochromis mossambicus. Our result showed that Se accumulation was observed in the gill, liver and brain tissues of fish exposed to different concentrations and accumulation varied upon different tissues. Enzymatic (SOD, CAT, GPx and GST) and non-enzymatic (GSH and MT) antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione-s-transferase (GST) were significantly increased after 96 h exposure of higher concentrations Se in the gill and liver tissue with the exception of GST activity was significantly inhibited in liver after 96 h exposure of higher concentrations of Se. In contrast, catalase (CAT) activities were inhibited for both tissues of Se exposure at 96 h. Reduced glutathione (GSH) and Metallothionein (MT) levels were increased in the gill and liver tissues after exposure to Se for 96 h. We also observed that Se affected antioxidant defense, increasing oxidative stress indicator of lipid peroxidation (LPO) and protein carbonyl (PCO) in gill and liver tissues of fish exposed to Se for 96 h at the concentration dependent manner. Increased DNA damage scores observed in liver tissue of fish exposed to Se for concentrations dependent manner, indicating potential of Se on fish. We also observed inhibition of acetylcholine esterase (AchE) activity in brain tissue of fish exposed to Se for higher concentrations. The changes in these parameters can be used as suitable biomarkers for monitoring the toxicity of Se in the aquatic environment.


Subject(s)
Oxidative Stress/drug effects , Selenium/toxicity , Tilapia/metabolism , Water Pollutants, Chemical/toxicity , Acetylcholinesterase/metabolism , Animals , Antioxidants/pharmacology , Biomarkers/metabolism , Brain/drug effects , Brain/metabolism , DNA Damage/drug effects , Gills/drug effects , Gills/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Metallothionein/metabolism , Protein Carbonylation , Superoxide Dismutase/metabolism
8.
Fish Shellfish Immunol ; 74: 501-508, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29305993

ABSTRACT

The present study evaluated the dietary supplementation of probiotic Bacillus licheniformis Dahb1 on the growth performance, immune parameters and antioxidant enzymes activities in serum and mucus as well as resistance against Aeromonas hydrophila in Mozambique tilapia Oreochromis mossambicus. Fish (24 ±â€¯2.5 g) were fed separately with three diets, 1) commercial diet (control), 2) diet containing probiotic at 105 cfu g-1 (D1) and 3) diet containing probiotic at 107 cfu g-1 (D2) for 4 weeks. Growth performance in term of final weight (FW) specific growth rate (SGR) and feed conversion ratio (FCR), immune parameters of total protein (TP), alkaline phosphatase (ALP), myeloperoxidase (MPO), lysozyme (LYZ), reactive oxygen species (ROS), reactive nitrogen species (RNS) and antioxidant parameters of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in serum and mucus were evaluated after 2nd and 4th weeks. The FW, SGR, and FCR of fish fed with D1 and D2 significantly improved (p < 0.05). The activities of ALP, LYZ and MPO in the mucus were significantly higher (p < 0.05) in fish that fed D1 and D2. The TP, ROS, RNS, SOD and GPx in the serum were significantly higher (p < 0.05) in fish that fed D1 and D2. In addition, the challenge test showed that fish fed D1 and D2 enhanced significantly (p < 0.05) the resistance against A. hydrophila (1 × 107 cells ml-1). In conclusion, probiotic B. licheniformis Dahb1 can be applied in diet at 107 cfu g-1 to improve healthy status and resistance against A. hydrophila in tilapia farming.


Subject(s)
Bacillus licheniformis/chemistry , Disease Resistance/immunology , Fish Diseases/immunology , Probiotics/pharmacology , Tilapia/immunology , Aeromonas hydrophila/physiology , Animal Feed/analysis , Animals , Antioxidants/metabolism , Diet/veterinary , Gram-Negative Bacterial Infections/immunology , Mucus/immunology , Tilapia/growth & development , Tilapia/metabolism , Tilapia/microbiology
9.
J Photochem Photobiol B ; 174: 133-143, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28772238

ABSTRACT

The control of Zika virus mosquito vectors and well as the development of drugs in the fight against biofilm-forming microbial pathogens, are timely and important challenges in current bionanoscience. Here we focused on the eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant. Initial confirmation of Ag nanoparticles (AgNPs) production was showed by a color change from transparent to dark brown. The UV-Visible spectrum (476nm), X-ray diffraction peaks (101, 200, 220 and 311) and Fourier transform infrared spectroscopy shed light on the production of green-capped AgNPs. Morphological structure analysis using HR-TEM showed that the AgNPs were mostly hexagonal in shape with rough edges, and a size of 20-30nm. The larvicidal potential of P. murex seed extract and AgNPs fabricated using the P. murex seed extract (Pm-AgNPs) was tested on fourth instar mosquito larvae of the Zika virus vector Aedes aegypti. Maximum efficacy was achieved by Pm-AgNPs against Ae. aegypti after 24h (LC50 34.88; LC90 64.56mg/ml), if compared to the P. murex seed extract. Histopathological analyses showed severe damages to the hindgut and larval muscles in NPs-treated Ae. aegypti larvae. The sub-MIC concentrations of Pm-AgNPs exhibited significant anti-biofilm activity against Gram positive (Enterococcus faecalis, Staphylococcus aureus) and Gram negative (Shigella sonnei, Pseudomonas aeruginosa) bacterial pathogens, as showed by EPS and MTP assays. Light and CLSM microscopic studies highlighted a significant impact of P. murex seed extract and Pm-synthesized AgNPs on the surface topography and architecture of bacterial biofilm, both in Gram positive and Gram negative species. Overall, results reported here contribute to the development of reliable large-scale protocols for the green fabrication of effective mosquito larvicides and biofilm inhibitors.


Subject(s)
Aedes/cytology , Bacteria/drug effects , Biofilms/drug effects , Pedaliaceae/chemistry , Silver/chemistry , Silver/pharmacology , Zika Virus , Animals , Green Chemistry Technology , Insect Vectors/drug effects , Insecticides/chemistry , Insecticides/pharmacology , Larva/cytology , Metal Nanoparticles , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...