Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 589(7842): 426-430, 2021 01.
Article in English | MEDLINE | ID: mdl-33268898

ABSTRACT

Among numerous challenges encountered at the beginning of extrauterine life, the most celebrated is the first breath that initiates a life-sustaining motor activity1. The neural systems that regulate breathing are fragile early in development, and it is not clear how they adjust to support breathing at birth. Here we identify a neuropeptide system that becomes activated immediately after birth and supports breathing. Mice that lack PACAP selectively in neurons of the retrotrapezoid nucleus (RTN) displayed increased apnoeas and blunted CO2-stimulated breathing; re-expression of PACAP in RTN neurons corrected these breathing deficits. Deletion of the PACAP receptor PAC1 from the pre-Bötzinger complex-an RTN target region responsible for generating the respiratory rhythm-phenocopied the breathing deficits observed after RTN deletion of PACAP, and suppressed PACAP-evoked respiratory stimulation in the pre-Bötzinger complex. Notably, a postnatal burst of PACAP expression occurred in RTN neurons precisely at the time of birth, coinciding with exposure to the external environment. Neonatal mice with deletion of PACAP in RTN neurons displayed increased apnoeas that were further exacerbated by changes in ambient temperature. Our findings demonstrate that well-timed PACAP expression by RTN neurons provides an important supplementary respiratory drive immediately after birth and reveal key molecular components of a peptidergic neural circuit that supports breathing at a particularly vulnerable period in life.


Subject(s)
Brain Stem/physiology , Parturition/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Respiration , Animals , Apnea/metabolism , Brain Stem/cytology , Carbon Dioxide/metabolism , Female , Male , Mice , Neurons/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
2.
Front Cell Neurosci ; 13: 365, 2019.
Article in English | MEDLINE | ID: mdl-31496935

ABSTRACT

Exploration of purinergic signaling in brainstem homeostatic control processes is challenging the traditional view that the biphasic hypoxic ventilatory response, which comprises a rapid initial increase in breathing followed by a slower secondary depression, reflects the interaction between peripheral chemoreceptor-mediated excitation and central inhibition. While controversial, accumulating evidence supports that in addition to peripheral excitation, interactions between central excitatory and inhibitory purinergic mechanisms shape this key homeostatic reflex. The objective of this review is to present our working model of how purinergic signaling modulates the glutamatergic inspiratory synapse in the preBötzinger Complex (key site of inspiratory rhythm generation) to shape the hypoxic ventilatory response. It is based on the perspective that has emerged from decades of analysis of glutamatergic synapses in the hippocampus, where the actions of extracellular ATP are determined by a complex signaling system, the purinome. The purinome involves not only the actions of ATP and adenosine at P2 and P1 receptors, respectively, but diverse families of enzymes and transporters that collectively determine the rate of ATP degradation, adenosine accumulation and adenosine clearance. We summarize current knowledge of the roles played by these different purinergic elements in the hypoxic ventilatory response, often drawing on examples from other brain regions, and look ahead to many unanswered questions and remaining challenges.

3.
Article in English | MEDLINE | ID: mdl-25634606

ABSTRACT

While once viewed as mere housekeepers, providing structural and metabolic support for neurons, it is now clear that neuroglia do much more. Phylogenetically, they have undergone enormous proliferation and diversification as central nervous systems grew in their complexity. In addition, they: i) are morphologically and functionally diverse; ii) play numerous, vital roles in maintaining CNS homeostasis; iii) are key players in brain development and responses to injury; and, iv) via gliotransmission, are likely participants in information processing. In this review, we discuss the diverse roles of neuroglia in maintaining homeostasis in the CNS, their evolutionary origins, the different types of neuroglia and their functional significance for respiratory control, and finally consider evidence that they contribute to the processing of chemosensory information in the respiratory network and the homeostatic control of blood gases.


Subject(s)
Neuroglia/physiology , Respiratory Center/physiology , Animals , Astrocytes/physiology , Biological Evolution , Central Nervous System/cytology , Central Nervous System/physiology , Ependymoglial Cells/physiology , Homeostasis , Humans , Microglia/physiology , Models, Neurological , Oligodendroglia/physiology , Respiratory Center/cytology , Respiratory Physiological Phenomena , Rett Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...