Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
IEEE J Biomed Health Inform ; 28(6): 3457-3465, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38557616

ABSTRACT

A novel method for tracking the tidal volume (TV) from electrocardiogram (ECG) is presented. The method is based on the amplitude of ECG-derived respiration (EDR) signals. Three different morphology-based EDR signals and three different amplitude estimation methods have been studied, leading to a total of 9 amplitude-EDR (AEDR) signals per ECG channel. The potential of these AEDR signals to track the changes in TV was analyzed. These methods do not need a calibration process. In addition, a personalized-calibration approach for TV estimation is proposed, based on a linear model that uses all AEDR signals from a device. All methods have been validated with two different ECG devices: a commercial Holter monitor, and a custom-made wearable armband. The lowest errors for the personalized-calibration methods, compared to a reference TV, were -3.48% [-17.41% / 12.93%] (median [first quartile / third quartile]) for the Holter monitor, and 0.28% [-10.90% / 17.15%] for the armband. On the other hand, medians of correlations to the reference TV were higher than 0.8 for uncalibrated methods, while they were higher than 0.9 for personal-calibrated methods. These results suggest that TV changes can be tracked from ECG using either a conventional (Holter) setup, or our custom-made wearable armband. These results also suggest that the methods are not as reliable in applications that induce small changes in TV, but they can be potentially useful for detecting large changes in TV, such as sleep apnea/hypopnea and/or exacerbations of a chronic respiratory disease.


Subject(s)
Electrocardiography, Ambulatory , Signal Processing, Computer-Assisted , Tidal Volume , Wearable Electronic Devices , Humans , Electrocardiography, Ambulatory/instrumentation , Electrocardiography, Ambulatory/methods , Tidal Volume/physiology , Male , Adult , Female , Electrocardiography/methods , Electrocardiography/instrumentation , Middle Aged , Young Adult
2.
Artif Intell Med ; 140: 102548, 2023 06.
Article in English | MEDLINE | ID: mdl-37210152

ABSTRACT

BACKGROUND: Deep learning has been successfully applied to ECG data to aid in the accurate and more rapid diagnosis of acutely decompensated heart failure (ADHF). Previous applications focused primarily on classifying known ECG patterns in well-controlled clinical settings. However, this approach does not fully capitalize on the potential of deep learning, which directly learns important features without relying on a priori knowledge. In addition, deep learning applications to ECG data obtained from wearable devices have not been well studied, especially in the field of ADHF prediction. METHODS: We used ECG and transthoracic bioimpedance data from the SENTINEL-HF study, which enrolled patients (≥21 years) who were hospitalized with a primary diagnosis of heart failure or with ADHF symptoms. To build an ECG-based prediction model of ADHF, we developed a deep cross-modal feature learning pipeline, termed ECGX-Net, that utilizes raw ECG time series and transthoracic bioimpedance data from wearable devices. To extract rich features from ECG time series data, we first adopted a transfer learning approach in which ECG time series were transformed into 2D images, followed by feature extraction using ImageNet-pretrained DenseNet121/VGG19 models. After data filtering, we applied cross-modal feature learning in which a regressor was trained with ECG and transthoracic bioimpedance. Then, we concatenated the DenseNet121/VGG19 features with the regression features and used them to train a support vector machine (SVM) without bioimpedance information. RESULTS: The high-precision classifier using ECGX-Net predicted ADHF with a precision of 94 %, a recall of 79 %, and an F1-score of 0.85. The high-recall classifier with only DenseNet121 had a precision of 80 %, a recall of 98 %, and an F1-score of 0.88. We found that ECGX-Net was effective for high-precision classification, while DenseNet121 was effective for high-recall classification. CONCLUSION: We show the potential for predicting ADHF from single-channel ECG recordings obtained from outpatients, enabling timely warning signs of heart failure. Our cross-modal feature learning pipeline is expected to improve ECG-based heart failure prediction by handling the unique requirements of medical scenarios and resource limitations.


Subject(s)
Heart Failure , Wearable Electronic Devices , Humans , Heart Failure/diagnosis , Electrocardiography , Support Vector Machine
3.
Comput Methods Programs Biomed ; 200: 105856, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33309076

ABSTRACT

BACKGROUND AND OBJECTIVE: Electrocardiogram (ECG) is widely used for the detection and diagnosis of cardiac arrhythmias such as atrial fibrillation. Most of the computer-based automatic cardiac abnormality detection algorithms require accurate identification of ECG components such as QRS complexes in order to provide a reliable result. However, ECGs are often contaminated by noise and artifacts, especially if they are obtained using wearable sensors, therefore, identification of accurate QRS complexes often becomes challenging. Most of the existing denoising methods were validated using simulated noise added to a clean ECG signal and they did not consider authentically noisy ECG signals. Moreover, many of them are model-dependent and sampling-frequency dependent and require a large amount of computational time. METHODS: This paper presents a novel ECG denoising technique using the variable frequency complex demodulation (VFCDM) algorithm, which considers noises from a variety of sources. We used the sub-band decomposition of the noise-contaminated ECG signals using VFCDM to remove the noise components so that better-quality ECGs could be reconstructed. An adaptive automated masking is proposed in order to preserve the QRS complexes while removing the unnecessary noise components. Finally, the ECG was reconstructed using a dynamic reconstruction rule based on automatic identification of the severity of the noise contamination. The ECG signal quality was further improved by removing baseline drift and smoothing via adaptive mean filtering. RESULTS: Evaluation results on the standard MIT-BIH Arrhythmia database suggest that the proposed denoising technique provides superior denoising performance compared to studies in the literature. Moreover, the proposed method was validated using real-life noise sources collected from the noise stress test database (NSTDB) and data from an armband ECG device which contains significant muscle artifacts. Results from both the wearable armband ECG data and NSTDB data suggest that the proposed denoising method provides significantly better performance in terms of accurate QRS complex detection and signal to noise ratio (SNR) improvement when compared to some of the recent existing denoising algorithms. CONCLUSIONS: The detailed qualitative and quantitative analysis demonstrated that the proposed denoising method has been robust in filtering varieties of noises present in the ECG. The QRS detection performance of the denoised armband ECG signals indicates that the proposed denoising method has the potential to increase the amount of usable armband ECG data, thus, the armband device with the proposed denoising method could be used for long term monitoring of atrial fibrillation.


Subject(s)
Electrocardiography , Signal Processing, Computer-Assisted , Algorithms , Artifacts , Signal-To-Noise Ratio
4.
IEEE Trans Biomed Eng ; 68(3): 1056-1065, 2021 03.
Article in English | MEDLINE | ID: mdl-32746038

ABSTRACT

A method for deriving respiratory rate from an armband, which records three-channel electrocardiogram (ECG) using three pairs of dry (no hydrogel) electrodes, is presented. The armband device is especially convenient for long-term (months-years) monitoring because it does not use obstructive leads nor hydrogels/adhesives, which cause skin irritation even after few days. An ECG-derived respiration (EDR) based on respiration-related modulation of QRS slopes and R-wave angle approach was used. Moreover, we modified the EDR algorithm to lower the computational cost. Respiratory rates were estimated with the armband-ECG and the reference plethysmography-based respiration signals from 15 subjects who underwent breathing experiment consisting of five stages of controlled breathing (at 0.1, 0.2, 0.3, 0.4, and 0.5 Hz) and one stage of spontaneous breathing. The respiratory rates from the armband obtained a relative error with respect to the reference (respiratory rate estimated from the plethysmography-based respiration signal) that was not higher than 2.26% in median nor interquartile range (IQR) for all stages of fixed and spontaneous breathing, and not higher than 3.57% in median nor IQR in the case when the low computational cost algorithm was applied. These results demonstrate that respiration-related modulation of the ECG morphology are also present in the armband ECG device. Furthermore, these results suggest that respiration-related modulation can be exploited by the EDR method based on QRS slopes and R-wave angles to obtain respiratory rate, which may have a wide range of applications including monitoring patients with chronic respiratory diseases, epileptic seizures detection, stress assessment, and sleep studies, among others.


Subject(s)
Respiratory Rate , Wearable Electronic Devices , Algorithms , Electrocardiography , Humans , Respiration , Signal Processing, Computer-Assisted
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 596-599, 2020 07.
Article in English | MEDLINE | ID: mdl-33018059

ABSTRACT

A pilot study on tracking changes in tidal volume (TV) using ECG signals acquired by a wearable armband is presented. The wearable armband provides three ECG channels by using three pairs of dry electrodes, resulting in a device that is convenient for long-term daily monitoring. An additional ECG channel was derived by computing the first principal component of the three original channels (by means of principal component analysis). Armband and spirometer signals were simultaneously recorded from five healthy subjects who were instructed to breathe with varying TV. Three electrocardiogram derived respiration (EDR) methods based on QRS complex morphology were studied: the QRS slopes range (SR), the R-wave angle (Փ), and the R-S amplitude (RS). The peak-to-peak amplitudes of these EDR signals were estimated as surrogates for TV, and their correlations with the reference TV (estimated from the spirometer signal) were computed. In addition, a multiple linear regression model was calculated for each subject, using the peak-to-peak amplitudes from the three EDR methods from the four ECG channels. Obtained correlations between TV and EDR peak-to-peak amplitude ranged from 0.0448 up to 0.8491. For every subject, a moderate correlation (>0.5) was obtained for at least one EDR method. Furthermore, the correlations obtained for the subject-specific multiple linear regression model ranged from 0.8234 up to 0.9154, and the goodness of fit was 0.73±0.07 (median ± standard deviation). These results suggest that the peak-to-peak amplitudes of the EDR methods are linearly related to the TV. opening the possibility of estimating TV directly from an armband ECG device.Clinical Relevance- This opens the door to possible continuous monitoring of TV from the armband by using EDR.


Subject(s)
Signal Processing, Computer-Assisted , Wearable Electronic Devices , Electrocardiography , Humans , Pilot Projects , Tidal Volume
6.
Sensors (Basel) ; 20(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824420

ABSTRACT

Long-term electrocardiogram (ECG) recordings while performing normal daily routines are often corrupted with motion artifacts, which in turn, can result in the incorrect calculation of heart rates. Heart rates are important clinical information, as they can be used for analysis of heart-rate variability and detection of cardiac arrhythmias. In this study, we present an algorithm for denoising ECG signals acquired with a wearable armband device. The armband was worn on the upper left arm by one male participant, and we simultaneously recorded three ECG channels for 24 h. We extracted 10-s sequences from armband recordings corrupted with added noise and motion artifacts. Denoising was performed using the redundant convolutional encoder-decoder (R-CED), a fully convolutional network. We measured the performance by detecting R-peaks in clean, noisy, and denoised sequences and by calculating signal quality indices: signal-to-noise ratio (SNR), ratio of power, and cross-correlation with respect to the clean sequences. The percent of correctly detected R-peaks in denoised sequences was higher than in sequences corrupted with either added noise (70-100% vs. 34-97%) or motion artifacts (91.86% vs. 61.16%). There was notable improvement in SNR values after denoising for signals with noise added (7-19 dB), and when sequences were corrupted with motion artifacts (0.39 dB). The ratio of power for noisy sequences was significantly lower when compared to both clean and denoised sequences. Similarly, cross-correlation between noisy and clean sequences was significantly lower than between denoised and clean sequences. Moreover, we tested our denoising algorithm on 60-s sequences extracted from recordings from the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database and obtained improvement in SNR values of 7.08 ± 0.25 dB (mean ± standard deviation (sd)). These results from a diverse set of data suggest that the proposed denoising algorithm improves the quality of the signal and can potentially be applied to most ECG measurement devices.


Subject(s)
Monitoring, Physiologic , Signal Processing, Computer-Assisted , Wearable Electronic Devices , Algorithms , Artifacts , Electrocardiography , Humans , Male , Signal-To-Noise Ratio
7.
JMIR Med Inform ; 8(8): e18715, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32852277

ABSTRACT

BACKGROUND: Accumulation of excess body fluid and autonomic dysregulation are clinically important characteristics of acute decompensated heart failure. We hypothesized that transthoracic bioimpedance, a noninvasive, simple method for measuring fluid retention in lungs, and heart rate variability, an assessment of autonomic function, can be used for detection of fluid accumulation in patients with acute decompensated heart failure. OBJECTIVE: We aimed to evaluate the performance of transthoracic bioimpedance and heart rate variability parameters obtained using a fluid accumulation vest with carbon black-polydimethylsiloxane dry electrodes in a prospective clinical study (System for Heart Failure Identification Using an External Lung Fluid Device; SHIELD). METHODS: We computed 15 parameters: 8 were calculated from the model to fit Cole-Cole plots from transthoracic bioimpedance measurements (extracellular, intracellular, intracellular-extracellular difference, and intracellular-extracellular parallel circuit resistances as well as fitting error, resonance frequency, tissue heterogeneity, and cellular membrane capacitance), and 7 were based on linear (mean heart rate, low-frequency components of heart rate variability, high-frequency components of heart rate variability, normalized low-frequency components of heart rate variability, normalized high-frequency components of heart rate variability) and nonlinear (principal dynamic mode index of sympathetic function, and principal dynamic mode index of parasympathetic function) analysis of heart rate variability. We compared the values of these parameters between 3 participant data sets: control (n=32, patients who did not have heart failure), baseline (n=23, patients with acute decompensated heart failure taken at the time of admittance to the hospital), and discharge (n=17, patients with acute decompensated heart failure taken at the time of discharge from hospital). We used several machine learning approaches to classify participants with fluid accumulation (baseline) and without fluid accumulation (control and discharge), termed with fluid and without fluid groups, respectively. RESULTS: Among the 15 parameters, 3 transthoracic bioimpedance (extracellular resistance, R0; difference in extracellular-intracellular resistance, R0 - R∞, and tissue heterogeneity, α) and 3 heart rate variability (high-frequency, normalized low-frequency, and normalized high-frequency components) parameters were found to be the most discriminatory between groups (patients with and patients without heart failure). R0 and R0 - R∞ had significantly lower values for patients with heart failure than for those without heart failure (R0: P=.006; R0 - R∞: P=.001), indicating that a higher volume of fluids accumulated in the lungs of patients with heart failure. A cubic support vector machine model using the 5 parameters achieved an accuracy of 92% for with fluid and without fluid group classification. The transthoracic bioimpedance parameters were related to intra- and extracellular fluid, whereas the heart rate variability parameters were mostly related to sympathetic activation. CONCLUSIONS: This is useful, for instance, for an in-home diagnostic wearable to detect fluid accumulation. Results suggest that fluid accumulation, and subsequently acute decompensated heart failure detection, could be performed using transthoracic bioimpedance and heart rate variability measurements acquired with a wearable vest.

8.
IEEE Trans Biomed Eng ; 67(12): 3464-3473, 2020 12.
Article in English | MEDLINE | ID: mdl-32305891

ABSTRACT

A wearable armband electrocardiogram (ECG) monitor has been used for daily life monitoring. The armband records three ECG channels, one electromyogram (EMG) channel, and tri-axial accelerometer signals. Contrary to conventional Holter monitors, the armband-based ECG device is convenient for long-term daily life monitoring because it uses no obstructive leads and has dry electrodes (no hydrogels), which do not cause skin irritation even after a few days. Principal component analysis (PCA) and normalized least mean squares (NLMS) adaptive filtering were used to reduce the EMG noise from the ECG channels. An artifact detector and an optimal channel selector were developed based on a support vector machine (SVM) classifier with a radial basis function (RBF) kernel using features that are related to the ECG signal quality. Mean HR was estimated from the 24-hour armband recordings from 16 volunteers in segments of 10 seconds each. In addition, four classical HR variability (HRV) parameters (SDNN, RMSSD, and powers at low and high frequency bands) were computed. For comparison purposes, the same parameters were estimated also for data from a commercial Holter monitor. The armband provided usable data (difference less than 10% from Holter-estimated mean HR) during 75.25%/11.02% (inter-subject median/interquartile range) of segments when the user was not in bed, and during 98.49%/0.79% of the bed segments. The automatic artifact detector found 53.85%/17.09% of the data to be usable during the non-bed time, and 95.00%/2.35% to be usable during the time in bed. The HRV analysis obtained a relative error with respect to the Holter data not higher than 1.37% (inter-subject median/interquartile range). Although further studies have to be conducted for specific applications, results suggest that the armband device has a good potential for daily life HR monitoring, especially for applications such as arrhythmia or seizure detection, stress assessment, or sleep studies.


Subject(s)
Electrocardiography , Wearable Electronic Devices , Artifacts , Electrocardiography, Ambulatory , Electrodes , Heart Rate , Humans
9.
Nutrients ; 12(1)2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31877912

ABSTRACT

The feasibility of detecting mild dehydration by using autonomic responses to cognitive stress was studied. To induce cognitive stress, subjects (n = 17) performed the Stroop task, which comprised four minutes of rest and four minutes of test. Nine indices of autonomic control based on electrodermal activity (EDA) and pulse rate variability (PRV) were obtained during both the rest and test stages of the Stroop task. Measurements were taken on three consecutive days in which subjects were "wet" (not dehydrated) and "dry" (experiencing mild dehydration caused by fluid restriction). Nine approaches were tested for classification of "wet" and "dry" conditions: (1) linear (LDA) and (2) quadratic discriminant analysis (QDA), (3) logistic regression, (4) support vector machines (SVM) with cubic, (5) fine Gaussian kernel, (6) medium Gaussian kernel, (7) a k-nearest neighbor (KNN) classifier, (8) decision trees, and (9) subspace ensemble of KNN classifiers (SE-KNN). The classification models were tested for all possible combinations of the nine indices of autonomic nervous system control, and their performance was assessed by using leave-one-subject-out cross-validation. An overall accuracy of mild dehydration detection was 91.2% when using the cubic SE-KNN and indices obtained only at rest, and the accuracy was 91.2% when using the cubic SVM classifiers and indices obtained only at test. Accuracy was 86.8% when rest-to-test increments in the autonomic indices were used along with the KNN and QDA classifiers. In summary, measures of autonomic function based on EDA and PRV are suitable for detecting mild dehydration and could potentially be used for the noninvasive testing of dehydration.


Subject(s)
Autonomic Nervous System/physiopathology , Cognition/physiology , Dehydration/diagnosis , Dehydration/physiopathology , Machine Learning , Stress, Psychological/physiopathology , Adult , Dehydration/classification , Galvanic Skin Response , Heart Rate/physiology , Humans , Male , Sensitivity and Specificity , Stroop Test , Support Vector Machine , Young Adult
10.
Front Neurosci ; 13: 1001, 2019.
Article in English | MEDLINE | ID: mdl-31607847

ABSTRACT

We studied the correlation between oscillatory brain activity and performance in healthy subjects performing the error awareness task (EAT) every 2 h, for 24 h. In the EAT, subjects were shown on a screen the names of colors and were asked to press a key if the name of the color and the color it was shown in matched, and the screen was not a duplicate of the one before ("Go" trials). In the event of a duplicate screen ("Repeat No-Go" trial) or a color mismatch ("Stroop No-Go" trial), the subjects were asked to withhold from pressing the key. We assessed subjects' (N = 10) response inhibition by measuring accuracy of the "Stroop No-Go" (SNGacc) and "Repeat No-Go" trials (RNGacc). We assessed their reactivity by measuring reaction time in the "Go" trials (GRT). Simultaneously, nine electroencephalographic (EEG) channels were recorded (Fp2, F7, F8, O1, Oz, Pz, O2, T7, and T8). The correlation between reactivity and response inhibition measures to brain activity was tested using quantitative measures of brain activity based on the relative power of gamma, beta, alpha, theta, and delta waves. In general, response inhibition and reactivity reached a steady level between 6 and 16 h of sleep deprivation, which was followed by sustained impairment after 18 h. Channels F7 and Fp2 had the highest correlation to the indices of performance. Measures of response inhibition (RNGacc and SNGacc) were correlated to the alpha and theta waves' power for most of the channels, especially in the F7 channel (r = 0.82 and 0.84, respectively). The reactivity (GRT) exhibited the highest correlation to the power of gamma waves in channel Fp2 (0.76). We conclude that quantitative measures of EEG provide information that can help us to better understand changes in subjects' performance and could be used as an indicator to prevent the adverse consequences of sleep deprivation.

11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4314-4317, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946822

ABSTRACT

A study on the feasibility of obtaining usable electrocardiogram (ECG) signals from a wearable armband during 24-hour continuous monitoring is presented. The wearable armband records 3-channel ECG and, unlike the conventional Holter monitors, it is convenient for long-term daily life monitoring because it uses no obstructive leads and it is based on dry (no gels) electrodes, which do not cause skin irritation. An optimal channel selector is presented, based on a linear classifier using features that are related to the ECG signal quality. In addition, this linear classifier is also used for artifact detection. The developed optimal channel selector and artifact detector are applied to 24-hour armband ECG recordings from 5 subjects. For reference comparison, the subjects also wore a Holter device. The armband obtained usable data during 51.07±13.54% (inter-subject mean ± standard deviation) of the non-bed recording time, and the mean heart rate was accurately (relative error with respect to the Holter less than 10%) estimated from the armband selected ECG channel from 94.39±3.41% of the usable data. During the bed recording time, the percentage of usable data was 93.54±2.92%, and mean heart rate was estimated accurately from 97.01±1.80% of those data. These results suggest that the armband device is potentially feasible for a long-term daily life heart rate monitoring based on the presented channel selector and artifact detector, especially during the bed time.


Subject(s)
Electrocardiography, Ambulatory/instrumentation , Wearable Electronic Devices , Arm , Electrodes , Feasibility Studies , Humans
12.
PLoS One ; 13(6): e0198328, 2018.
Article in English | MEDLINE | ID: mdl-29856815

ABSTRACT

The electrodermal activity (EDA) is a useful tool for assessing skin sympathetic nervous activity. Using spectral analysis of EDA data at rest, we have previously found that the spectral band which is the most sensitive to central sympathetic control is largely confined to 0.045 to 0.25 Hz. However, the frequency band associated with sympathetic control in EDA has not been studied for exercise conditions. Establishing the band limits more precisely is important to ensure the accuracy and sensitivity of the technique. As exercise intensity increases, it is intuitive that the frequencies associated with the autonomic dynamics should also increase accordingly. Hence, the aim of this study was to examine the appropriate frequency band associated with the sympathetic nervous system in the EDA signal during exercise. Eighteen healthy subjects underwent a sub-maximal exercise test, including a resting period, walking, and running, until achieving 85% of maximum heart rate. Both EDA and ECG data were measured simultaneously for all subjects. The ECG was used to monitor subjects' instantaneous heart rate, which was used to set the experiment's end point. We found that the upper bound of the frequency band (Fmax) containing the EDA spectral power significantly shifted to higher frequencies when subjects underwent prolonged low-intensity (Fmax ~ 0.28) and vigorous-intensity exercise (Fmax ~ 0.37 Hz) when compared to the resting condition. In summary, we have found shifting of the sympathetic dynamics to higher frequencies in the EDA signal when subjects undergo physical activity.


Subject(s)
Exercise/physiology , Galvanic Skin Response/physiology , Adolescent , Adult , Autonomic Nervous System/physiopathology , Exercise Test , Female , Heart Rate/physiology , Humans , Male , Time Factors , Young Adult
13.
Sensors (Basel) ; 18(6)2018 May 26.
Article in English | MEDLINE | ID: mdl-29861438

ABSTRACT

The detection of intrathoracic volume retention could be crucial to the early detection of decompensated heart failure (HF). Transthoracic Bioimpedance (TBI) measurement is an indirect, promising approach to assessing intrathoracic fluid volume. Gel-based adhesive electrodes can produce skin irritation, as the patient needs to place them daily in the same spots. Textile electrodes can reduce skin irritation; however, they inconveniently require wetting before each use and provide poor adherence to the skin. Previously, we developed waterproof reusable dry carbon black polydimethylsiloxane (CB/PDMS) electrodes that exhibited a good response to motion artifacts. We examined whether these CB/PDMS electrodes were suitable sensing components to be embedded into a monitoring vest for measuring TBI and the electrocardiogram (ECG). We recruited N = 20 subjects to collect TBI and ECG data. The TBI parameters were different between the various types of electrodes. Inter-subject variability for copper-mesh CB/PDMS electrodes and Ag/AgCl electrodes was lower compared to textile electrodes, and the intra-subject variability was similar between the copper-mesh CB/PDMS and Ag/AgCl. We concluded that the copper mesh CB/PDMS (CM/CB/PDMS) electrodes are a suitable alternative for textile electrodes for TBI measurements, but with the benefit of better skin adherence and without the requirement of wetting the electrodes, which can often be forgotten by the stressed HF subjects.

14.
PLoS One ; 13(3): e0195087, 2018.
Article in English | MEDLINE | ID: mdl-29596477

ABSTRACT

Identifying trauma patients at risk of imminent hemorrhagic shock is a challenging task in intraoperative and battlefield settings given the variability of traditional vital signs, such as heart rate and blood pressure, and their inability to detect blood loss at an early stage. To this end, we acquired N = 58 photoplethysmographic (PPG) recordings from both trauma patients with suspected hemorrhage admitted to the hospital, and healthy volunteers subjected to blood withdrawal of 0.9 L. We propose four features to characterize each recording: goodness of fit (r2), the slope of the trend line, percentage change, and the absolute change between amplitude estimates in the heart rate frequency range at the first and last time points. Also, we propose a machine learning algorithm to distinguish between blood loss and no blood loss. The optimal overall accuracy of discriminating between hypovolemia and euvolemia was 88.38%, while sensitivity and specificity were 88.86% and 87.90%, respectively. In addition, the proposed features and algorithm performed well even when moderate blood volume was withdrawn. The results suggest that the proposed features and algorithm are suitable for the automatic discrimination between hypovolemia and euvolemia, and can be beneficial and applicable in both intraoperative/emergency and combat casualty care.


Subject(s)
Blood Volume/physiology , Hemorrhage/diagnosis , Hypovolemia/diagnosis , Photoplethysmography/methods , Support Vector Machine , Water-Electrolyte Imbalance/diagnosis , Wounds and Injuries/complications , Adult , Algorithms , Case-Control Studies , Female , Hemorrhage/etiology , Humans , Hypovolemia/etiology , Male , Water-Electrolyte Imbalance/etiology
15.
ACS Appl Mater Interfaces ; 9(43): 37524-37528, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29020777

ABSTRACT

Electrocardiography (ECG) is an essential technique for analyzing and monitoring cardiovascular physiological conditions such as arrhythmia. This article demonstrates the integration of screen-printed ECG circuitry from a commercially available conducting polymer, PEDOT:PSS, onto commercially available finished textiles. ECG signals were recorded in dry skin conditions due to the ability of PEDOT:PSS to function as both ionic and electronic conductors. The signal amplifies when the skin transpires water vapor or by applying a common lotion on the skin. Finally, PEDOT:PSS wires connected to PEDOT:PSS electrodes have been shown to record ECG signals comparable to Ag/AgCl connected to copper wires.


Subject(s)
Electrodes , Electrocardiography , Polymers , Printing , Textiles
16.
Front Physiol ; 8: 409, 2017.
Article in English | MEDLINE | ID: mdl-28676763

ABSTRACT

We analyzed multiple measures of the autonomic nervous system (ANS) based on electrodermal activity (EDA) and heart rate variability (HRV) for young healthy subjects undergoing 24-h sleep deprivation. In this study, we have utilized the error awareness test (EAT) every 2 h (13 runs total), to evaluate the deterioration of performance. EAT consists of trials where the subject is presented words representing colors. Subjects are instructed to press a button ("Go" trials) or withhold the response if the word presented and the color of the word mismatch ("Stroop No-Go" trial), or the screen is repeated ("Repeat No-Go" trials). We measured subjects' (N = 10) reaction time to the "Go" trials, and accuracy to the "Stroop No-Go" and "Repeat No-Go" trials. Simultaneously, changes in EDA and HRV indices were evaluated. Furthermore, the relationship between reactiveness and vigilance measures and indices of sympathetic control based on HRV were analyzed. We found the performance improved to a stable level from 6 through 16 h of deprivation, with a subsequently sustained impairment after 18 h. Indices of higher frequencies of EDA related more to vigilance measures, whereas lower frequencies index (skin conductance leve, SCL) measured the reactiveness of the subject. We conclude that indices of EDA, including those of the higher frequencies, termed TVSymp, EDASymp, and NSSCRs, provide information to better understand the effect of sleep deprivation on subjects' autonomic response and performance.

17.
IEEE J Biomed Health Inform ; 21(3): 764-777, 2017 05.
Article in English | MEDLINE | ID: mdl-26915142

ABSTRACT

Two parameters that a breathing status monitor should provide include tidal volume ( VT) and respiration rate (RR). Recently, we implemented an optical monitoring approach that tracks chest wall movements directly on a smartphone. In this paper, we explore the use of such noncontact optical monitoring to obtain a volumetric surrogate signal, via analysis of intensity changes in the video channels caused by the chest wall movements during breathing, in order to provide not only average RR but also information about VT and to track RR at each time instant (IRR). The algorithm, implemented on an Android smartphone, is used to analyze the video information from the smartphone's camera and provide in real time the chest movement signal from N = 15 healthy volunteers, each breathing at VT ranging from 300 mL to 3 L. These measurements are performed separately for each volunteer. Simultaneous recording of volume signals from a spirometer is regarded as reference. A highly linear relationship between peak-to-peak amplitude of the smartphone-acquired chest movement signal and spirometer VT is found ( r2 = 0.951 ±0.042, mean ± SD). After calibration on a subject-by-subject basis, no statistically significant bias is found in terms of VT estimation; the 95% limits of agreement are -0.348 to 0.376 L, and the root-mean-square error (RMSE) was 0.182 ±0.107 L. In terms of IRR estimation, a highly linear relation between smartphone estimates and the spirometer reference was found ( r2 = 0.999 ±0.002). The bias, 95% limits of agreement, and RMSE are -0.024 breaths-per-minute (bpm), -0.850 to 0.802 bpm, and 0.414 ±0.178 bpm, respectively. These promising results show the feasibility of developing an inexpensive and portable breathing monitor, which could provide information about IRR as well as VT, when calibrated on an individual basis, using smartphones. Further studies are required to enable practical implementation of the proposed approach.


Subject(s)
Image Processing, Computer-Assisted/instrumentation , Monitoring, Physiologic/instrumentation , Respiratory Rate/physiology , Signal Processing, Computer-Assisted/instrumentation , Smartphone , Tidal Volume/physiology , Adult , Algorithms , Female , Humans , Male , Middle Aged , Monitoring, Physiologic/methods , Thorax/physiology , Young Adult
18.
PLoS One ; 11(3): e0151013, 2016.
Article in English | MEDLINE | ID: mdl-26963390

ABSTRACT

Some smartphones have the capability to process video streams from both the front- and rear-facing cameras simultaneously. This paper proposes a new monitoring method for simultaneous estimation of heart and breathing rates using dual cameras of a smartphone. The proposed approach estimates heart rates using a rear-facing camera, while at the same time breathing rates are estimated using a non-contact front-facing camera. For heart rate estimation, a simple application protocol is used to analyze the varying color signals of a fingertip placed in contact with the rear camera. The breathing rate is estimated from non-contact video recordings from both chest and abdominal motions. Reference breathing rates were measured by a respiration belt placed around the chest and abdomen of a subject; reference heart rates (HR) were determined using the standard electrocardiogram. An automated selection of either the chest or abdominal video signal was determined by choosing the signal with a greater autocorrelation value. The breathing rate was then determined by selecting the dominant peak in the power spectrum. To evaluate the performance of the proposed methods, data were collected from 11 healthy subjects. The breathing ranges spanned both low and high frequencies (6-60 breaths/min), and the results show that the average median errors from the reflectance imaging on the chest and the abdominal walls based on choosing the maximum spectral peak were 1.43% and 1.62%, respectively. Similarly, HR estimates were also found to be accurate.


Subject(s)
Heart Rate , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Respiratory Mechanics , Smartphone , Adult , Female , Humans , Male
19.
Sensors (Basel) ; 16(3)2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26999152

ABSTRACT

A smartphone-based tidal volume (V(T)) estimator was recently introduced by our research group, where an Android application provides a chest movement signal whose peak-to-peak amplitude is highly correlated with reference V(T) measured by a spirometer. We found a Normalized Root Mean Squared Error (NRMSE) of 14.998% ± 5.171% (mean ± SD) when the smartphone measures were calibrated using spirometer data. However, the availability of a spirometer device for calibration is not realistic outside clinical or research environments. In order to be used by the general population on a daily basis, a simple calibration procedure not relying on specialized devices is required. In this study, we propose taking advantage of the linear correlation between smartphone measurements and V(T) to obtain a calibration model using information computed while the subject breathes through a commercially-available incentive spirometer (IS). Experiments were performed on twelve (N = 12) healthy subjects. In addition to corroborating findings from our previous study using a spirometer for calibration, we found that the calibration procedure using an IS resulted in a fixed bias of -0.051 L and a RMSE of 0.189 ± 0.074 L corresponding to 18.559% ± 6.579% when normalized. Although it has a small underestimation and slightly increased error, the proposed calibration procedure using an IS has the advantages of being simple, fast, and affordable. This study supports the feasibility of developing a portable smartphone-based breathing status monitor that provides information about breathing depth, in addition to the more commonly estimated respiratory rate, on a daily basis.


Subject(s)
Monitoring, Physiologic/instrumentation , Smartphone , Spirometry/methods , Tidal Volume/physiology , Adult , Calibration , Female , Humans , Male , Monitoring, Physiologic/methods , Respiration , Respiratory Rate/physiology , Spirometry/instrumentation
20.
Ann Biomed Eng ; 44(9): 2746-59, 2016 09.
Article in English | MEDLINE | ID: mdl-26847825

ABSTRACT

Correct labeling of breath phases is useful in the automatic analysis of respiratory sounds, where airflow or volume signals are commonly used as temporal reference. However, such signals are not always available. The development of a smartphone-based respiratory sound analysis system has received increased attention. In this study, we propose an optical approach that takes advantage of a smartphone's camera and provides a chest movement signal useful for classification of the breath phases when simultaneously recording tracheal sounds. Spirometer and smartphone-based signals were acquired from N = 13 healthy volunteers breathing at different frequencies, airflow and volume levels. We found that the smartphone-acquired chest movement signal was highly correlated with reference volume (ρ = 0.960 ± 0.025, mean ± SD). A simple linear regression on the chest signal was used to label the breath phases according to the slope between consecutive onsets. 100% accuracy was found for the classification of the analyzed breath phases. We found that the proposed classification scheme can be used to correctly classify breath phases in more challenging breathing patterns, such as those that include non-breath events like swallowing, talking, and coughing, and alternating or irregular breathing. These results show the feasibility of developing a portable and inexpensive phonopneumogram for the analysis of respiratory sounds based on smartphones.


Subject(s)
Mobile Applications , Respiratory Sounds/classification , Respiratory Sounds/physiopathology , Smartphone , Adult , Female , Humans , Male , Middle Aged , Spirometry
SELECTION OF CITATIONS
SEARCH DETAIL
...