Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Aquat Toxicol ; 272: 106945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759526

ABSTRACT

Human impacts on ecological communities are pervasive and species must either move or adapt to changing environmental conditions. For environments polluted by contaminants, researchers have found hundreds of target pest species evolving increased tolerance, but we have substantially fewer cases of evolved tolerance in non-target species. When species do evolve increased tolerance, inducible tolerance can provide immediate protection and favor the evolution of increased tolerance over generations via genetic assimilation. Using a model larval amphibian (wood frogs, Rana sylvatica), we examined the tolerance of 15 populations from western Pennsylvania and eastern New York (USA), when first exposed to no pesticide or sublethal concentrations and subsequently exposed to lethal concentrations of three common insecticides (carbaryl, chlorpyrifos, and diazinon). We found high variation in naïve tolerance among the populations for all three insecticides. We also discovered that nearly half of the populations exhibited inducible tolerance, though the degree of inducible tolerance (magnitude of tolerance plasticity; MoTP) varied. We observed a cross-tolerance pattern of the populations between chlorpyrifos and diazinon, but no pattern of similar MoTP among the pesticides. With populations combined from two regions, increased tolerance was not associated with proximity to agricultural fields, but there were correlations between proximity to agriculture and MoTP. Collectively, these results suggests that amphibian populations possess a wide range of naïve tolerance to common pesticides, with many also being able to rapidly induce increased tolerance. Future research should examine inducible tolerance in a wide variety of other taxa and contaminants to determine the ubiquity of these responses to anthropogenic factors.


Subject(s)
Carbaryl , Chlorpyrifos , Diazinon , Insecticides , Animals , Insecticides/toxicity , Chlorpyrifos/toxicity , Diazinon/toxicity , Carbaryl/toxicity , Water Pollutants, Chemical/toxicity , Larva/drug effects , Ranidae , Pennsylvania , New York , Drug Tolerance
2.
Environ Pollut ; 337: 122588, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37734634

ABSTRACT

Contamination of aquatic ecosystems is pervasive around the world and there has been a growing interest in understanding the ecological and evolutionary impacts. For contaminants such as pesticides, researchers are discovering widespread evolution of increased tolerance in target and non-target species and the role of phenotypic plasticity in facilitating this evolution. In contrast, we know much less about the evolution of tolerance in response to the increasing problem of freshwater salinization. In amphibians, recent studies have discovered that some populations from ponds with high salt pollution (from deicing road salts) have evolved higher tolerance. In this study, we examined whether populations of wood frog tadpoles (Rana sylvatica) possess rapid, inducible tolerance to salinity in a manner similar to their inducible tolerance to pesticides. Using newly hatched tadpoles from nine populations, we discovered that eight of the populations were able to alter their tolerance to salt. However, seven of the eight inducible populations experienced a higher sensitivity to salt while the eighth population experienced a higher tolerance to salt. Such inducible responses likely reflect the interplay of salt dynamics in the ponds, combined with the available genetic variation and selection intensity of each pond. This appears to be the first example of inducible salt tolerance in any animal and future studies should examine the generality of the response and how it may affect the evolution of tolerance to the global issue of freshwater salinization.


Subject(s)
Ecosystem , Pesticides , Animals , Fresh Water , Larva/physiology , Ranidae/physiology
3.
Aquat Toxicol ; 261: 106626, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37437313

ABSTRACT

Ecotoxicological studies using single test populations may miss the inherent variation of natural systems and limit our understanding of how contaminants affect focal species. Though population-level variation in pesticide tolerance is commonly observed in host taxa, few studies have assessed population-level differences in the tolerance of parasites to different contaminants. We investigated population-level variation in insecticide tolerance of three Echinostoma trivolvis life stages (egg, miracidium, and cercaria) to three insecticides (carbaryl, chlorpyrifos, and diazinon). We tested two relevant metrics of insecticide tolerance-baseline and induced-across up to eight different parasite populations per life stage. Across all life stages, the insecticide treatments tended to reduce survival, but the magnitude of their effects often varied significantly among populations. Surprisingly, we found that exposure to chlorpyrifos increased the hatching success of echinostome eggs relative to the control treatment in three of six tested populations. We also found that cercariae shed from snails previously exposed to a sublethal concentration of chlorpyrifos had a significantly lower mortality rate when subsequently exposed to a lethal concentration of chlorpyrifos relative to individuals from snails that were not previously exposed; this suggests inducible tolerance in cercariae. We found no evidence that insecticide tolerance is correlated across parasite life stages within a population. Together the findings of our study demonstrate that single-population toxicity assays may greatly over- or underestimate the effects of pesticides on the survival of free-living parasite stages, insecticide tolerance levels may not be predictable from one parasite life stage to the next, and insecticides can have both expected and counterintuitive effects on non-target taxa.


Subject(s)
Chlorpyrifos , Echinostoma , Insecticides , Pesticides , Water Pollutants, Chemical , Humans , Animals , Insecticides/toxicity , Chlorpyrifos/toxicity , Water Pollutants, Chemical/toxicity , Pesticides/pharmacology , Snails
4.
Biol Rev Camb Philos Soc ; 97(4): 1677-1690, 2022 08.
Article in English | MEDLINE | ID: mdl-35388965

ABSTRACT

Macrophytes are an important part of freshwater ecosystems and they have direct and indirect roles in keeping the water clear and providing structure and habitats for other aquatic organisms. Currently, climate change is posing a major threat to macrophyte communities by altering the many drivers that determine macrophyte abundance and composition. We synthesise current literature to examine the direct effects of climate change (i.e. changes in CO2 , temperature, and precipitation patterns) on aquatic macrophytes in lakes as well as indirect effects via invasive species and nutrient dynamics. The combined effects of climate change are likely to lead to an increased abundance and distribution of emergent and floating species, and a decreased abundance and distribution of submerged macrophytes. In small shallow lakes, these processes are likely to be faster than in deep temperate lakes; with lower light levels, water level fluctuations and increases in temperature, the systems will become dominated by algae. In general, specialized macrophyte species in high-latitude and high-altitude areas will decrease in number while more competitive invasive species are likely to outcompete native species. Given that the majority of endemic species reside in tropical lakes, climate change, together with other anthropogenic pressures, might cause the extinction of a large number of endemic species. Lakes at higher altitudes in tropical areas could therefore potentially be a hotspot for future conservation efforts for protecting endemic macrophyte species. In response to a combination of climate-change induced threats, the macrophyte community might collapse, which will change the status of lakes and may initiate a negative feedback loop that will affect entire lake ecosystems.


Subject(s)
Climate Change , Ecosystem , Aquatic Organisms , Introduced Species , Lakes/chemistry , Water
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35193976

ABSTRACT

Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (Cl-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl- thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.


Subject(s)
Guidelines as Topic , Lakes , Salinity , Water Quality , Animals , Anthropogenic Effects , Ecosystem , Europe , North America , Zooplankton
6.
Environ Pollut ; 285: 117636, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34380226

ABSTRACT

Increasing chloride concentrations from road salt applications are an emerging threat to freshwater diversity in cold weather regions. Few studies have focused on how road salt affects freshwater biota and even fewer have focused on how the rate of exposure alters organism responses. We hypothesized that road salt concentrations delivered gradually would result in slower population declines and more rapid rebounds due to evolved tolerance. To test this hypothesis, we examined the responses of freshwater lake organisms to four environmentally relevant salt concentrations (100, 230, 860, and 1600 mg Cl-/L) that differed in application rate (abrupt vs. gradual). We used outdoor aquatic mesocosms containing zooplankton, filamentous algae, phytoplankton, periphyton, and macroinvertebrates. We found negative effects of road salt on zooplankton and macroinvertebrate abundance, but positive effects on phytoplankton and periphyton, likely resulting from reduced grazing. Only rarely did we detect a difference between abrupt vs gradual salt applications and the directions of those differences were not consistent. This affirms the need for additional research on how road salt pollution entering ecosystems at different frequencies and magnitudes will alter freshwater communities.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Animals , Lakes , Phytoplankton , Sodium Chloride , Water Pollutants, Chemical/toxicity , Zooplankton
7.
Evolution ; 75(10): 2568-2588, 2021 10.
Article in English | MEDLINE | ID: mdl-34437719

ABSTRACT

Environmental heterogeneity has led to the widespread evolution of phenotypic plasticity in all taxonomic groups. Although phenotypic plasticity has been examined from multiple perspectives, few studies have examined evolutionary patterns of plasticity within a phylogeny. We conducted common-garden experiments on 20 species of tadpoles, spanning three families, exposed for 4 weeks to a control, predator cues, or reduced food (i.e., increased intraspecific competition). We quantified tadpole activity, growth, and relative morphology and found widespread differences in species responses to predator cues and reduced food. We detected pervasive phylogenetic signals in traits within each environment, but the phylogenetic signal was much less common in the trait plasticities. Among different models of continuous character evolution, Brownian Motion and Ornstein Uhlenbeck models provided better fits to the data than the Early Burst model. Tadpole activity level in predator environments had much higher evolutionary rates than in the control and reduced-food environments; we did not see this pattern in the other traits. In comparing traits versus trait plasticities, activity evolved much faster than the plasticity of activity whereas morphological traits evolved much slower than morphological plasticities. Collectively, these results suggest that traits and trait plasticities can exhibit dramatically different evolutionary patterns.


Subject(s)
Adaptation, Physiological , Cues , Animals , Humans , Larva/genetics , Phenotype , Phylogeny
8.
Environ Pollut ; 287: 117652, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34186499

ABSTRACT

Because of environmental and societal concerns, new strategies are being developed to mitigate the effects of road salt. These include new deicers that are alternatives to or mixtures with the most common road salt, sodium chloride (NaCl), improved techniques and equipment, and biotic mitigation methods. Using outdoor mesocosms, we investigated the impacts of NaCl and two common alternatives, magnesium chloride (MgCl2) and calcium chloride (CaCl2) on freshwater communities. We also investigated the mitigation ability of a common macrophyte, Elodea. We hypothesized that road salt exposure reduces filamentous algae, zooplankton, and macrocrustaceans, but results in increases in phytoplankton and gastropods. We also hypothesized that MgCl2 is the most toxic salt to communities, followed by CaCl2, and then NaCl. Lastly, we hypothesized that macrophytes mitigate some of the effects of road salt, specifically the effects on primary producers. We found that all three salts reduced filamentous algal biomass and amphipod abundance, but only MgCl2 reduced Elodea biomass. MgCl2 had the largest and longest lasting effects on zooplankton, specifically cladocerans and copepods, which resulted in a significant increase in phytoplankton and rotifers. CaCl2 increased ostracods and decreased snail abundance, but NaCl increased snail abundance. Lastly, while we did not find many interactions between road salt and macrophyte treatments, macrophytes did counteract many of the salt effects on producers, leading to decreased phytoplankton, increased filamentous algae, and altered abiotic responses. Thus, at similar chloride concentrations, NaCl alternatives, specifically MgCl2, are not safer for aquatic ecosystems and more research is needed to find safer road management strategies to protect freshwater ecosystems.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Animals , Phytoplankton , Salts , Water Pollutants, Chemical/toxicity , Zooplankton
9.
Ecol Appl ; 31(4): e02305, 2021 06.
Article in English | MEDLINE | ID: mdl-33587795

ABSTRACT

Exposure to agrochemicals can drive rapid phenotypic and genetic changes in exposed populations. For instance, amphibian populations living far from agriculture (a proxy for agrochemical exposure) exhibit low pesticide tolerance, but they can be induced to possess high tolerance following a sublethal pesticide exposure. In contrast, amphibian populations close to agriculture exhibit high, constitutive tolerance to pesticides. A recent study has demonstrated that induced pesticide tolerance appears to have arisen from plastic responses to predator cues. As a result, we might expect that selection for constitutive pesticide tolerance in populations near agriculture (i.e., genetic assimilation) will lead to the evolution of constitutive responses to natural stressors. Using 15 wood frog (Rana sylvatica) populations from across an agricultural gradient, we conducted an outdoor mesocosm experiment to examine morphological (mass, body length, and tail depth) and behavioral responses (number of tadpoles observed and overall activity) of tadpoles exposed to three stressor environments (no-stressor, competitors, or predator cues). We discovered widespread differences in tadpole traits among populations and stressor environments, but no population-by-environment interaction. Subsequent linear models revealed that population distance to agriculture (DTA) was occasionally correlated with tadpole traits in a given environment and with magnitudes of plasticity, but none of the correlations were significant after Bonferroni adjustment. The magnitudes of predator and competitor plasticity were never correlated with the magnitude of pesticide-induced plasticity that we documented in a companion study. These results suggest that while predator-induced plasticity appears to have laid the foundation for the evolution of pesticide-induced plasticity and its subsequent genetic assimilation, inspection of population-level differences in plastic responses show that the evolution of pesticide-induced plasticity has not had a reciprocal effect on the evolved plastic responses to natural stressors.


Subject(s)
Pesticides , Agrochemicals , Animals , Cues , Larva , Pesticides/toxicity , Ranidae/genetics
10.
Sci Total Environ ; 763: 143005, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33158521

ABSTRACT

Stream nutrient concentrations exhibit marked temporal variation due to hydrology and other factors such as the seasonality of biological processes. Many water quality monitoring programs sample too infrequently (i.e., weekly or monthly) to fully characterize lotic nutrient conditions and to accurately estimate nutrient loadings. A popular solution to this problem is the surrogate-regression approach, a method by which nutrient concentrations are estimated from related parameters (e.g., conductivity or turbidity) that can easily be measured in situ at high frequency using sensors. However, stream water quality data often exhibit skewed distributions, nonlinear relationships, and multicollinearity, all of which can be problematic for linear-regression models. Here, we use a flexible and robust machine learning technique, Random Forests Regression (RFR), to estimate stream nitrogen (N) and phosphorus (P) concentrations from sensor data within a forested, mountainous drainage area in upstate New York. When compared to actual nutrient data from samples tested in the laboratory, this approach explained much of the variation in nitrate (89%), total N (85%), particulate P (76%), and total P (74%). The models were less accurate for total soluble P (47%) and soluble reactive P (32%), though concentrations of these latter parameters were in a relatively low range. Although soil moisture and fluorescent dissolved organic matter are not commonly used as surrogates in nutrient-regression models, they were important predictors in this study. We conclude that RFR shows great promise as a tool for modeling instantaneous stream nutrient concentrations from high-frequency sensor data, and encourage others to evaluate this approach for supplementing traditional (laboratory-determined) nutrient datasets.

11.
Environ Pollut ; 272: 116006, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33189447

ABSTRACT

Novel stressors introduced by human activities increasingly threaten freshwater ecosystems. The annual application of more than 2.3 billion kg of pesticide active ingredient and 22 billion kg of road salt has led to the contamination of temperate waterways. While pesticides and road salt are known to cause direct and indirect effects in aquatic communities, their possible interactive effects remain widely unknown. Using outdoor mesocosms, we created wetland communities consisting of zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. We evaluated the toxic effects of six broad-spectrum insecticides from three families (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin), as well as the potentially interactive effects of four of these insecticides with three concentrations of road salt (NaCl; 44, 160, 1600 Cl- mg/L). Organophosphate exposure decreased zooplankton abundance, elevated phytoplankton biomass, and reduced tadpole mass whereas exposure to neonicotinoids and pyrethroids decreased zooplankton abundance but had no significant effect on phytoplankton abundance or tadpole mass. While organophosphates decreased zooplankton abundance at all salt concentrations, effects on phytoplankton abundance and tadpole mass were dependent upon salt concentration. In contrast, while pyrethroids had no effects in the absence of salt, they decreased zooplankton and phytoplankton density under increased salt concentrations. Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.


Subject(s)
Insecticides , Water Pollutants, Chemical , Animals , Ecosystem , Humans , Insecticides/toxicity , Phytoplankton , Sodium Chloride , Water Pollutants, Chemical/toxicity , Wetlands , Zooplankton
12.
Parasitology ; 147(13): 1515-1523, 2020 11.
Article in English | MEDLINE | ID: mdl-32660661

ABSTRACT

The study of priority effects with respect to coinfections is still in its infancy. Moreover, existing coinfection studies typically focus on infection outcomes associated with exposure to distinct sets of parasite species, despite that functionally and morphologically similar parasite species commonly coexist in nature. Therefore, it is important to understand how interactions between similar parasites influence infection outcomes. Surveys at seven ponds in northwest Pennsylvania found that multiple species of echinostomes commonly co-occur. Using a larval anuran host (Rana pipiens) and the two most commonly identified echinostome species from our field surveys (Echinostoma trivolvis and Echinoparyphium lineage 3), we examined how species composition and timing of exposure affect patterns of infection. When tadpoles were exposed to both parasites simultaneously, infection loads were higher than when exposed to Echinoparyphium alone but similar to being exposed to Echinostoma alone. When tadpoles were sequentially exposed to the parasite species, tadpoles first exposed to Echinoparyphium had 23% lower infection loads than tadpoles first exposed to Echinostoma. These findings demonstrate that exposure timing and order, even with similar parasites, can influence coinfection outcomes, and emphasize the importance of using molecular methods to identify parasites for ecological studies.


Subject(s)
Coinfection/veterinary , Echinostomatidae/physiology , Echinostomiasis/veterinary , Host-Parasite Interactions , Rana pipiens , Animals , Coinfection/epidemiology , Coinfection/parasitology , Echinostomiasis/epidemiology , Echinostomiasis/parasitology , Larva/growth & development , Pennsylvania/epidemiology , Ponds , Prevalence , Rana pipiens/growth & development
13.
Environ Pollut ; 266(Pt 3): 115244, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32688196

ABSTRACT

The application of roadway deicing salts is increasing the salinity of freshwater systems. Increased salinization from salts, such as NaCl, CaCl2 and MgCl2, can have direct, negative impacts on freshwater organisms at concentrations found in nature. Yet, our understanding of how these salts can indirectly impact freshwater organisms by altering important ecological interactions, such as those between hosts and their parasites, is limited. Using a larval amphibian and infectious free-living helminth (i.e. trematode) model, we examined whether exposure to environmentally relevant concentrations of NaCl, CaCl2 and MgCl2 1) influence trematode mortality; 2) alter amphibian-trematode interactions; and 3) alter larval amphibian activity (a behavior associated with parasite avoidance). We found that exposure to CaCl2 greatly reduced trematode survival across all Cl- concentrations (230, 500, 860 and 1000 mg Cl- L-1) while NaCl and MgCl2 had no effect. When both host and parasites were exposed to the salts, exposure to NaCl, but not MgCl2 or CaCl2, increased infection. The lack of effect of CaCl2 on infection was likely driven by CaCl2 reducing trematode survival. Exposure to NaCl increased infection at 500 mg Cl- L-1, but not 230 or 860 mg Cl- L-1. Increased infection was not due to salt exposure altering tadpole behavior. Our results suggest that NaCl can negatively impact amphibian populations indirectly by increasing trematode infections in tadpole hosts.


Subject(s)
Parasites , Trematoda , Animals , Fresh Water , Larva , Salinity , Sodium Chloride
14.
Sci Total Environ ; 694: 133704, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31394331

ABSTRACT

Non-native species often lead to undesirable ecological and environmental impacts. Two hypotheses that predict establishment of non-native species are enemy release and biotic resistance. Support for these hypotheses in freshwater invasions is mixed. Experiments combined with field observations provide a complementary approach to understanding how interactions between native and non-native species lead to enemy release or biotic resistance. We tested experimentally whether these hypotheses provided insights into the invasion of the banded mystery snail (Viviparus georgianus), which has invaded the Great Lakes region and northeastern Unites States (US) from the southeastern US. Because freshwater systems vary widely in their nutrient concentrations due to natural and anthropogenic processes, we tested whether nutrient additions altered competitive and predatory interactions that regulate mechanisms of enemy release or biotic resistance. We evaluated the status of the mystery snail invasion in a 3-year field survey of Lake George (NY, US) to identify if field observations supported any experimental conclusions. The presence of the banded mystery snail led to a 14% and 27% reduction in biomass of a native competitor under low- and high-nutrient concentrations, respectively. The mystery snail also triggered a 29% biomass loss of a native snail predator, but only in low-nutrient concentrations. Field surveys indicated that the mystery snail dominated the snail community; of seven snail species, it comprised 77% of all snails. Results from the field surveys combined with experimental results indicate that neither competitors nor predators have likely suppressed the invasion of the banded mystery snail. This conclusion is consistent with competitive- and predatory-enemy release as we found no indication of biotic resistance via competition or predation from native species. Our results further highlight that the post-establishment impacts of invasive species are altered by the trophic state of freshwater ecosystems.


Subject(s)
Aquatic Organisms/physiology , Ecosystem , Food Chain , Introduced Species , Water Pollution/statistics & numerical data , Animals , Environmental Monitoring , Great Lakes Region , Predatory Behavior , Snails
15.
Infect Genet Evol ; 73: 197-204, 2019 09.
Article in English | MEDLINE | ID: mdl-31051273

ABSTRACT

Major histocompatibility complex (MHC) genes code for membrane-embedded proteins that are involved in parasite/pathogen recognition. The link between the MHC and immunity makes these genes important genetic markers to evaluate in systems where infectious disease is associated with population declines. As human impacts on wildlife populations continue to increase, it is also essential to evaluate the role of MHC and immunity in the context of anthropogenic change. Amphibians are an ideal model to test the role of the MHC in infectious disease resistance, as parasites and anthropogenic disturbances currently threaten populations worldwide. We characterized the diversity of MHC class IIß peptide binding region alleles, 13 microsatellite loci, and population-level trematode resistance in 14 populations of wood frogs (Lithobates sylvaticus) in northwestern Pennsylvania with varying geographic distances to agriculture. To assess local adaptation in the MHC IIß, we compared genetic differentiation of MHC IIß and microsatellite markers (FST). We also tested for an effect of isolation by distance on genetic differentiation of MHC IIß and microsatellite markers. In addition, we evaluated whether population-level MHC IIß diversity and common allele frequencies correlate with distance to agriculture and trematode resistance. We found no evidence for genetic structure based on microsatellite analysis nor an effect of isolation by distance on neutral and immunogenetic markers. However, we did detect structure based on the MHC IIß locus, suggesting that it is under local selection. The MHC IIß allele Lisy-DAB*1 was more common in populations living near agricultural sites. Populations with higher MHC IIß diversity showed increased resistance to trematodes. Our results suggest that wood frog populations experience immunogenetic differences at a small scale. In addition, agriculture may disturb natural associations between hosts and parasites through its influence on immunocompetence, underscoring the importance of examining the effects of environmental context on host-parasite interactions.


Subject(s)
Adaptation, Physiological/genetics , Genes, MHC Class II/genetics , Ranidae/genetics , Agriculture , Animals , Genetic Variation , Genotype
16.
Article in English | MEDLINE | ID: mdl-30509914

ABSTRACT

Recent discoveries have documented evolutionary responses to freshwater salinization. We investigated if evolutionary responses to salinization exhibit life-history trade-offs or if they can mitigate ecological impacts such as cascading effects through mechanisms of tolerance and cross-tolerance. We conducted an outdoor mesocosm experiment using populations of Daphnia pulex-a ubiquitous algal grazer-that were either naive or had previously experienced selection to become more tolerant to sodium chloride (NaCl). During the initial phase of population growth, we discovered that evolved tolerance comes at the cost of slower population growth in the absence of salt. We found evolved Daphnia populations maintained a tolerance to NaCl approximately 30 generations after the initial discovery. Evolved tolerance to NaCl also conferred cross-tolerance to a high concentration of CaCl2 (3559 µS cm-1) and a moderate concentration of MgCl2 (967 µS cm-1). A higher concentration of MgCl2 (2188 µS cm-1) overwhelmed the cross-tolerance and killed all Daphnia Tolerance to NaCl did not mitigate NaCl-induced cascades leading to phytoplankton blooms, but cross-tolerance at moderate concentrations of MgCl2 and high concentrations of CaCl2 mitigated such cascading effects caused by these two salts. These discoveries highlight the important interplay between ecology and evolution in understanding the full impacts of freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Subject(s)
Biological Evolution , Daphnia/drug effects , Fresh Water/chemistry , Life History Traits , Salinity , Water Pollutants, Chemical/adverse effects , Animals , Daphnia/physiology , Zooplankton/drug effects , Zooplankton/physiology
17.
Article in English | MEDLINE | ID: mdl-30509918

ABSTRACT

Anthropogenic activities such as mining, agriculture and industrial wastes have increased the rate of salinization of freshwater ecosystems around the world. Despite the known and probable consequences of freshwater salinization, few consequential regulatory standards and management procedures exist. Current regulations are generally inadequate because they are regionally inconsistent, lack legal consequences and have few ion-specific standards. The lack of ion-specific standards is problematic, because each anthropogenic source of freshwater salinization is associated with a distinct set of ions that can present unique social and economic costs. Additionally, the environmental and toxicological consequences of freshwater salinization are often dependent on the occurrence, concentration and ratios of specific ions. Therefore, to protect fresh waters from continued salinization, discrete, ion-specific management and regulatory strategies should be considered for each source of freshwater salinization, using data from standardized, ion-specific monitoring practices. To develop comprehensive monitoring, regulatory, and management guidelines, we recommend the use of co-adaptive, multi-stakeholder approaches that balance environmental, social, and economic costs and benefits associated with freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Subject(s)
Environmental Policy/legislation & jurisprudence , Environmental Restoration and Remediation/legislation & jurisprudence , Fresh Water/analysis , Salinity , Water Pollution, Chemical/legislation & jurisprudence , Government Regulation
18.
Environ Toxicol Chem ; 37(10): 2692-2698, 2018 10.
Article in English | MEDLINE | ID: mdl-30187530

ABSTRACT

Widespread use of pesticides often contaminates natural habitats, exposing nontarget organisms to pesticides that were designed to control pest populations. Even low levels of pesticides can affect aquatic communities both directly and indirectly. Previous work has shown that trace amounts of the pesticide chlorpyrifos altered tadpole morphology and neurodevelopment in artificial ponds (mesocosms). To determine whether effects resulted from direct chlorpyrifos exposure or from disruption of the food web due to a pesticide-induced decline in zooplankton, we examined the impacts of chlorpyrifos on amphibian development in the presence of chlorpyrifos-resistant zooplankton, a key component of the aquatic trophic community. Northern leopard frog (Lithobates pipiens) tadpoles were reared through metamorphosis in mesocosms containing either 0 or 1 µg/L chlorpyrifos and either chlorpyrifos-resistant or chlorpyrifos-sensitive Daphnia pulex zooplankton. Developmental exposure to chlorpyrifos resulted in metamorphs with a relatively wider optic tectum, medulla, and diencephalon compared with controls, and this result was found regardless of the zooplankton population within the mesocosm. Thus, chlorpyrifos directly impacted brain development, independent of the effects on the trophic community. With respect to body shape, chlorpyrifos had no effect on body shape of metamorphs reared in mesocosms with chlorpyrifos-sensitive zooplankton, but body shape was sensitive to zooplankton population in the absence of chlorpyrifos. To conclude, low, ecologically relevant doses of organophosphorous pesticides can directly impact neurodevelopment in a vertebrate model. Environ Toxicol Chem 2018;37:2692-2698. © 2018 SETAC.


Subject(s)
Brain/growth & development , Brain/pathology , Chlorpyrifos/toxicity , Insecticides/toxicity , Rana pipiens/growth & development , Animals , Brain/drug effects , Daphnia/drug effects , Ecosystem , Larva/drug effects , Principal Component Analysis , Zooplankton/drug effects
19.
Environ Toxicol Chem ; 37(8): 2188-2197, 2018 08.
Article in English | MEDLINE | ID: mdl-29786147

ABSTRACT

Although the paradigm for increased tolerance to pesticides has been by selection on constitutive (naïve) traits, recent research has shown it can also occur through phenotypic plasticity. However, the time period in which induction can occur, the duration of induced tolerance, and the influence of multiple induction events remain unknown. We hypothesized that the induction of increased pesticide tolerance is limited to early sensitive periods, the magnitude of induced tolerance depends on the number of exposures, and the retention of induced tolerance depends on the time elapsed after an exposure and the number of exposures. To test these hypotheses, we exposed wood frog tadpoles to either a no-carbaryl control (water) or 0.5 mg/L carbaryl at 4 time periods, and later tested their tolerance to carbaryl using time-to-death assays. We discovered that tadpoles induced increased tolerance early and midway but not late in our experiment and their constitutive tolerance increased with age. We found no difference in the magnitude of induced tolerance after a single or 2 exposures. Finally, induced pesticide tolerance was reversed within 6 d but was retained only when tadpoles experienced all 4 consecutive exposures. Phenotypic plasticity provides an immediate response for sensitive amphibian larvae to early pesticide exposures and reduces phenotypic mismatches in aquatic environments contaminated by agrochemicals. Environ Toxicol Chem 2018;37:2188-2197. © 2018 SETAC.


Subject(s)
Environmental Exposure/analysis , Insecticides/toxicity , Ranidae/physiology , Animals , Carbaryl/toxicity , Larva/drug effects , Pesticides/toxicity , Time Factors
20.
Environ Toxicol Chem ; 37(7): 1839-1845, 2018 07.
Article in English | MEDLINE | ID: mdl-29508902

ABSTRACT

Humans are altering environments by destroying habitats, introducing species, and releasing pollution. One emergent pollutant is the salinization of freshwater habitats from road-deicing salts. Government agencies have set thresholds to protect freshwater ecosystems, yet these values are exceeded in many systems. The present study investigated the tolerance of Asian clams (Corbicula fluminea), a common invasive bivalve, to the common road salt (sodium chloride [NaCl]) and 2 alternatives (magnesium chloride [MgCl2 ] and calcium chloride [CaCl2 ]). Experiments conducted at 4 and 8 d revealed that Asian clams are very salt tolerant. The median lethal concentration after 4 d of exposure (LC504-d ) estimate was 2162 mg Cl- /L for MgCl2 , 3554 mg Cl- /L for CaCl2 , and more than 22 581 mg Cl- /L for NaCl, which were all significantly different from each other (p ≤ 0.05). The LC508-d values were significantly different (p ≤ 0.05) from each other and from the LC504-d values, and were estimated to be 1769 mg Cl- /L for MgCl2 , 2235 Cl- /L for CaCl2 , and 10 069 mg Cl- /L for NaCl. Mortality was determined using 2 methods: either no response after exposure or no response after being in freshwater following exposure. For the majority of the LC50s, these methods were not significantly different (p > 0.05). The high salt tolerance of Asian clams is a concern because of their transportation in ballast water between aquatic ecosystems. Furthermore, salt-tolerant organisms may outcompete sensitive organisms in salinized ecosystems, which may alter ecosystem services. Environ Toxicol Chem 2018;37:1839-1845. © 2018 SETAC.


Subject(s)
Corbicula/drug effects , Ice , Salts/toxicity , Toxicity Tests , Animals , Ecosystem , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...