Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Antioxidants (Basel) ; 12(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37627541

ABSTRACT

Farmed Atlantic salmon reared under natural seasonal changes in sea-cages had an elevated consumption of antioxidants during spring. It is, however, unclear if this response was caused by the increase in day length, temperature, or both. The present study examined redox processes in Atlantic salmon that were reared in indoor tanks at constant temperature (9 °C) under a simulated natural photoperiod. The experiment lasted for 6 months, from vernal to autumnal equinoxes, with the associated increase and subsequent decrease in day length. We found that intracellular antioxidants were depleted, and there was an increase in malondialdehyde (MDA) levels in the liver and muscle of Atlantic salmon with increasing day length. Antioxidant enzyme activity in liver and muscle and their related gene profiles was also affected, with a distinct upregulation of genes involved in maintaining redox homeostasis, such as peroxiredoxins in the brain in April. This study also revealed a nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response in muscle and liver, suggesting that fish integrate environmental signals through redox signaling pathways. Furthermore, growth and expression profiles implicated in growth hormone (GH) signaling and cell cycle regulation coincided with stress patterns. The results demonstrate that a change in photoperiod without the concomitant increase in temperature is sufficient to stimulate growth and change the tissue oxidative state in Atlantic salmon during spring and early summer. These findings provide new insights into redox regulation mechanisms underlying the response to the changing photoperiod, and highlight a link between oxidative status and physiological function.

2.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36139780

ABSTRACT

Accumulating evidence indicates a close relationship between oxidative stress and growth rate in fish. However, the underlying mechanisms of this relationship remain unclear. This study evaluated the combined effect of dietary antioxidants and growth hormone (GH) on the liver and the muscle redox status of Atlantic salmon. There were two sequential experimental phases (EP) termed EP1 and EP2, each lasting for 6 weeks. In EP1, Atlantic salmon were fed either low-(L, 230 mg/kg ascorbic acid (Asc), 120 mg/kg α-tocopherol (α-TOH)), or high-(H, 380 mg/kg Asc, 210 mg/kg α-TOH)vitamin diets. The vitamins were supplemented as stable forms and the feeding was continued in EP2. In EP2, half of the fish were implanted with 3 µL per g body weight of recombinant bovine GH (Posilac®, 1 mg rbGH g BW-1) suspended in sesame oil, while the other half were held in different tanks and sham-implanted with similar volumes of the sesame oil vehicle. Here, we show that increasing high levels of vitamin C and E (diet H) increased their content in muscle and liver during EP1. GH implantation decreased vitamin C and E levels in both liver and muscle but increased malondialdehyde (MDA) levels only in the liver. GH also affected many genes and pathways of antioxidant enzymes and the redox balance. Among the most consistent were the upregulation of genes coding for the NADPH oxidase family (NOXs) and downregulation of the oxidative stress response transcription factor, nuclear factor-erythroid 2-related factor 2 (nrf2), and its downstream target genes in the liver. We verified that GH increases the growth rate until the end of the trail and induces an oxidative effect in the liver and muscle of Atlantic salmon. Dietary antioxidants do lower oxidative stress but have no effect on the growth rate. The present study is intended as a starting point to understand the potential interactions between growth and redox signaling in fish.

3.
Fish Shellfish Immunol ; 92: 637-648, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31271836

ABSTRACT

This study investigated the effects of restricted feeding on the growth performance, oxidative stress and inflammation of Megalobrama amblycephala fed high-carbohydrate (HC) diets. Fish (46.94 ±â€¯0.04 g) were randomly assigned to four groups containing the satiation of a control diet (30% carbohydrate) and three satiate levels (100% (HC1), 80% (HC2) and 60% (HC3)) of the HC diets (43% carbohydrate) for 8 weeks. Results showed that HC1 diet remarkably decreased final weight (FW), weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR), hepatic activities of total anti-oxidation capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT), the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, sirtuin-1 (SIRT1) protein expression and hepatic transcriptions of AMPKα2, SIRT1, nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (CAT), manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1) and interleukin10 (IL 10) compared to the control group, whereas the opposite was true for protein efficiency ratio (PER), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), plasma glucose levels, alanine transaminase (AST) and aspartate aminotransferase (ALT) activities, hepatic contents of malondialdehyde (MDA), tumour necrosis factor α (TNF α) and interleukin 1ß (IL 1ß), ATP and AMP contents and hepatic transcriptions of kelch-like ECH associating protein 1 (Keap1), IkB kinase α (IKK α), nuclear factor kappa B (NF-κB), TNF α, IL 1ß, interleukin 6 (IL 6) and transforming growth factor ß (TGF ß). As for the HC groups, fish fed the HC2 diet obtained relatively high values of SGR, PER, NRE, ERE, hepatic activities of T-AOC, SOD and CAT, the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, SIRT1 protein expression and hepatic transcriptions of AMPKα2, Nrf2, CAT, copper/zinc superoxide dismutase (Cu/Zn-SOD), Mn-SOD, GPx1, glutathione S-transferase (GST) and interleukin10 (IL 10), while the opposite was true for hepatic content of IL 6 and transcription of IKK α. Overall, an 80% satiation improved the growth performance and alleviated the oxidative stress and inflammation of blunt snout bream fed HC diets via the activation of the AMPK-SIRT1 pathway and the up-regulation of the activities and transcriptions of Nrf2-modulated antioxidant enzymes coupled with the depression of the levels and transcriptions of the NF-κB-mediated pro-inflammatory cytokines.


Subject(s)
Caloric Restriction/veterinary , Cyprinidae/immunology , Dietary Carbohydrates/metabolism , Inflammation/drug therapy , Oxidative Stress/drug effects , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Animal Feed/analysis , Animals , Cyprinidae/metabolism , Diet/veterinary , Random Allocation , Sirtuin 1/metabolism
4.
PLoS One ; 12(4): e0175491, 2017.
Article in English | MEDLINE | ID: mdl-28419112

ABSTRACT

Periods of high or fluctuating seawater temperatures result in several physiological challenges for farmed salmonids, including an increased prevalence and severity of cataracts. The aim of the present study was to compare cataractogenesis in Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss) reared at two temperatures, and investigate whether temperature influences lens metabolism and cataract development. Atlantic salmon (101±2 g) and rainbow trout (125±3 g) were reared in seawater at either 13°C (optimum for growth) or 19°C during the 35 days experiment (n = 4 tanks for each treatment). At the end of the experiment, the prevalence of cataracts was nearly 100% for Atlantic salmon compared to ~50% for rainbow trout, irrespective of temperature. The severity of the cataracts, as evaluated by slit-lamp inspection of the lens, was almost three fold higher in Atlantic salmon compared to rainbow trout. The global metabolic profile revealed differences in lens composition and metabolism between the two species, which may explain the observed differences in cataract susceptibility between the species. The largest differences were seen in the metabolism of amino acids, especially the histidine metabolism, and this was confirmed by a separate quantitative analysis. The global metabolic profile showed temperature dependent differences in the lens carbohydrate metabolism, osmoregulation and redox homeostasis. The results from the present study give new insight in cataractogenesis in Atlantic salmon and rainbow trout reared at high temperature, in addition to identifying metabolic markers for cataract development.


Subject(s)
Cataract/metabolism , Fish Diseases/metabolism , Lens, Crystalline/metabolism , Metabolomics/methods , Oncorhynchus mykiss/metabolism , Salmo salar/metabolism , Amino Acids/metabolism , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Carbohydrate Metabolism , Cataract/pathology , Fish Diseases/pathology , Glutathione/metabolism , Histidine/analogs & derivatives , Histidine/metabolism , Homeostasis , Hot Temperature , Osmoregulation , Oxidation-Reduction , Seawater , Severity of Illness Index , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...