Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Front Neurol ; 1: 136, 2010.
Article in English | MEDLINE | ID: mdl-21188264

ABSTRACT

Previous studies have shown that numerous sprouts originating from a neuroma, after nerve injury in neonatal animals, can invade spinal nerve roots. However, no study with a focus on how such sprouts behave when they reach the border between the central and peripheral nervous system (CNS-PNS border) has been published. In this study we have in detail examined the CNS-PNS border of ventral roots in kittens with light and electron microscopy after early postnatal sciatic nerve resection. A transient ingrowth of substance P positive axons was observed into the CNS, but no spouts remained 6 weeks after the injury. Using serial sections and electron microscopy it was possible to identify small bundles of unmyelinated axons that penetrated from the root fascicles for a short distance into the CNS. These axons ended blindly, sometimes with a growth cone-like terminal swelling filled with vesicles. The axon bundles were accompanied by p75 positive cells in both the root fascicles and the pia mater, but not in the CNS. It may thus be suggested that neurotrophin presenting p75 positive cells could facilitate axonal growth into the pia mater and that the lack of such cells in the CNS compartment might contribute to the failure of growth into the CNS. A maldevelopment of myelin sheaths at the CNS-PNS border of motor axons was observed and it seems possible that this could have consequences for the propagation of action potential across this region after neonatal nerve injury. Thus, in this first detailed study on the behavior of recurrent sprouts at the CNS-PNS border.

7.
Headache ; 46(10): 1518-34, 2006.
Article in English | MEDLINE | ID: mdl-17115985

ABSTRACT

BACKGROUND: Cluster headache (CH) is a primary neurovascular headache disorder characterized by attacks of excruciating pain accompanied by ipsilateral autonomic symptoms. CH pathophysiology is presumed to involve an activation of hypothalamic and trigeminovascular systems, but inflammation and immunological mechanisms have also been hypothesized to be of importance. OBJECTIVE: To identify differentially expressed genes during different clinical phases of CH, assuming that changes of pathophysiological importance would also be seen in peripheral venous blood. METHODS: Blood samples were drawn at 3 consecutive occasions from 3 episodic CH patients: during attacks, between attacks and in remission, and at 1 occasion from 3 matched controls. Global gene expression was analyzed with microarray tehnology using the Affymetrix Human Genome U133 2.0 Plus GeneChip Set, covering more than 54,000 gene transcripts, corresponding to almost 22,000 genes. Quantitative RT-PCR on S100P gene expression was analyzed in 6 patients and 14 controls. RESULTS: Overall, quite small differences were seen intraindividually and large differences interindividually. However, pairwise comparisons of signal values showed upregulation of several S100 calcium binding proteins; S100A8 (calgranulin A), S100A12 (calgranulin C), and S100P during active phase of the disease compared to remission. Also, annexin A3 (calcium-binding) and ICAM3 showed upregulation. BIRC1 (neuronal apoptosis inhibitory protein), CREB5, HLA-DQA1, and HLA-DQB1 were upregulated in patients compared to controls. The upregulation of S100P during attack versus remission was confirmed by quantitative RT-PCR analysis. CONCLUSIONS: The S100A8 and S100A12 proteins are considered markers of non-infectious inflammatory disease, while the function of S100P is still largely unknown. Furthermore, upregulation of HLA-DQ genes in CH patients may also indicate an inflammatory response. Upregulation of these pro-inflammatory genes during the active phase of CH has not formerly been reported. Data from this pilot microarray study provide a basis for further studies in CH.


Subject(s)
Cluster Headache/genetics , Adult , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Pilot Projects , RNA/biosynthesis , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction
9.
Muscle Nerve ; 30(6): 752-60, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15468048

ABSTRACT

We have studied a large Swedish family with a mutation in the nerve growth factor beta (NGFB) gene causing insensitivity to deep pain without anhidrosis (hereditary sensory and autonomic neuropathy, type V; HSAN V). Painfree joint destruction and fractures were common. Peripheral nerve conduction was normal, but temperature thresholds were increased. Sural nerve biopsies showed a moderate loss of A delta fibers and a severe reduction of C fibers. The three most severely affected cases were all born to consanguineous parents, and were homozygotes for the causal genetic mutation. Treatment of these patients is discussed.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies/genetics , Hereditary Sensory and Autonomic Neuropathies/physiopathology , Mutation , Nerve Growth Factor/genetics , Adult , Aged , Aged, 80 and over , Child , Female , Hereditary Sensory and Autonomic Neuropathies/diagnostic imaging , Humans , Male , Pedigree , Radiography , Sural Nerve/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...