Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719749

ABSTRACT

The tripartite motif-containing protein 66 (TRIM66, also known as TIF1-delta) is a PHD-Bromo-containing protein primarily expressed in post-meiotic male germ cells known as spermatids. Biophysical assays showed that the TRIM66 PHD-Bromodomain binds to H3 N-terminus only when lysine 4 is unmethylated. We addressed TRIM66's role in reproduction by loss-of-function genetics in the mouse. Males homozygous for Trim66-null mutations produced functional spermatozoa. Round spermatids lacking TRIM66 up-regulated a network of genes involved in histone acetylation and H3K4 methylation. Profiling of H3K4me3 patterns in the sperm produced by the Trim66-null mutant showed minor alterations below statistical significance. Unexpectedly, Trim66-null males, but not females, sired pups overweight at birth, hence revealing that Trim66 mutations cause a paternal effect phenotype.


Subject(s)
Histones , Animals , Male , Mice , Female , Histones/metabolism , Mice, Knockout , Spermatids/metabolism , Spermatozoa/metabolism , Spermatogenesis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Phenotype , Paternal Inheritance/genetics , Mutation , Methylation , Mice, Inbred C57BL , Acetylation
2.
STAR Protoc ; 4(4): 102572, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37917580

ABSTRACT

This overview guides both novices and experienced researchers facing challenging targets to select the most appropriate gene expression system for producing a particular protein. By answering four key questions, readers can determine the most suitable gene expression system following a decision scheme. This guide addresses the most commonly used and accessible systems and provides brief descriptions of the main gene expression systems' key characteristics to assist decision making. Additionally, information has been included for selected less frequently used "exotic" gene expression systems.


Subject(s)
Databases, Pharmaceutical , Ligands , Recombinant Proteins/genetics , Gene Expression/genetics
3.
Lancet Reg Health Am ; 27: 100616, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37868648

ABSTRACT

Background: The true incidence of SARS-CoV-2 infection in Costa Rica was likely much higher than officially reported, because infection is often associated with mild symptoms and testing was limited by official guidelines and socio-economic factors. Methods: Using serology to define natural infection, we developed a statistical model to estimate the true cumulative incidence of SARS-CoV-2 in Costa Rica early in the pandemic. We estimated seroprevalence from 2223 blood samples collected from November 2020 to October 2021 from 1976 population-based controls from the RESPIRA study. Samples were tested for antibodies against SARS-CoV-2 nucleocapsid and the receptor-binding-domain of the spike proteins. Using a generalized linear model, we estimated the ratio of true infections to officially reported cases. Applying these ratios to officially reported totals by age, sex, and geographic area, we estimated the true number of infections in the study area, where 70% of Costa Ricans reside. We adjusted the seroprevalence estimates for antibody decay over time, estimated from 1562 blood samples from 996 PCR-confirmed COVID-19 cases. Findings: The estimated total proportion infected (ETPI) was 4.0 times higher than the officially reported total proportion infected (OTPI). By December 16th, 2021, the ETPI was 47% [42-52] while the OTPI was 12%. In children and adolescents, the ETPI was 11.0 times higher than the OTPI. Interpretation: Our findings suggest that nearly half the population had been infected by the end of 2021. By the end of 2022, it is likely that a large majority of the population had been infected. Funding: This work was sponsored and funded by the National Institute of Allergy and Infectious Diseases through the National Cancer Institute, the Science, Innovation, Technology and Telecommunications Ministry of Costa Rica, and Costa Rican Biomedical Research Agency-Fundacion INCIENSA (grant N/A).

4.
mSystems ; 8(3): e0107322, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37184670

ABSTRACT

The antibiotic-tolerant biofilms present in tuberculous granulomas add an additional layer of complexity when treating mycobacterial infections, including tuberculosis (TB). For a more efficient treatment of TB, the biofilm forms of mycobacteria warrant specific attention. Here, we used Mycobacterium marinum (Mmr) as a biofilm-forming model to identify the abundant proteins covering the biofilm surface. We used biotinylation/streptavidin-based proteomics on the proteins exposed at the Mmr biofilm matrices in vitro to identify 448 proteins and ex vivo proteomics to detect 91 Mmr proteins from the mycobacterial granulomas isolated from adult zebrafish. In vitro and ex vivo proteomics data are available via ProteomeXchange with identifiers PXD033425 and PXD039416, respectively. Data comparisons pinpointed the molecular chaperone GroEL2 as the most abundant Mmr protein within the in vitro and ex vivo proteomes, while its paralog, GroEL1, with a known role in biofilm formation, was detected with slightly lower intensity values. To validate the surface exposure of these targets, we created in-house synthetic nanobodies (sybodies) against the two chaperones and identified sybodies that bind the mycobacterial biofilms in vitro and those present in ex vivo granulomas. Taken together, the present study reports a proof-of-concept showing that surface proteomics in vitro and ex vivo proteomics combined is a valuable strategy to identify surface-exposed proteins on the mycobacterial biofilm. Biofilm surface-binding nanobodies could be eventually used as homing agents to deliver biofilm-targeting treatments to the sites of persistent biofilm infection. IMPORTANCE With the currently available antibiotics, the treatment of TB takes months. The slow response to treatment is caused by antibiotic tolerance, which is especially common among bacteria that form biofilms. Such biofilms are composed of bacterial cells surrounded by the extracellular matrix. Both the matrix and the dormant lifestyle of the bacterial cells are thought to hinder the efficacy of antibiotics. To be able to develop faster-acting treatments against TB, the biofilm forms of mycobacteria deserve specific attention. In this work, we characterize the protein composition of Mmr biofilms in bacterial cultures and in mycobacteria extracted from infected adult zebrafish. We identify abundant surface-exposed targets and develop the first sybodies that bind to mycobacterial biofilms. As nanobodies can be linked to other therapeutic compounds, in the future, they can provide means to target therapies to biofilms.


Subject(s)
Mycobacterium marinum , Single-Domain Antibodies , Tuberculosis , Animals , Proteomics , Zebrafish , Anti-Bacterial Agents , Tuberculosis/microbiology , Biofilms
5.
J Exp Med ; 220(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36269299

ABSTRACT

Primary tumors and distant site metastases form a bidirectionally communicating system. Yet, the molecular mechanisms of this crosstalk are poorly understood. Here, we identified the proteolytically cleaved fragments of angiopoietin-like 4 (ANGPTL4) as contextually active protumorigenic and antitumorigenic contributors in this communication ecosystem. Preclinical studies in multiple tumor models revealed that the C-terminal fragment (cANGPTL4) promoted tumor growth and metastasis. In contrast, the N-terminal fragment of ANGPTL4 (nANGPTL4) inhibited metastasis and enhanced overall survival in a postsurgical metastasis model by inhibiting WNT signaling and reducing vascularity at the metastatic site. Tracing ANGPTL4 and its fragments in tumor patients detected full-length ANGPTL4 primarily in tumor tissues, whereas nANGPTL4 predominated in systemic circulation and correlated inversely with disease progression. The study highlights the spatial context of the proteolytic cleavage-dependent pro- and antitumorigenic functions of ANGPTL4 and identifies and validates nANGPTL4 as a novel biomarker of tumor progression and antimetastatic therapeutic agent.


Subject(s)
Angiopoietin-Like Protein 4 , Neoplasms , Humans , Angiopoietin-Like Protein 4/pharmacology , Angiopoietin-Like Protein 4/therapeutic use , Angiopoietins/pharmacology , Angiopoietins/therapeutic use , Biomarkers, Tumor , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/metabolism , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use
6.
Eur J Med Chem ; 244: 114857, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36332548

ABSTRACT

Although vaccines are greatly mitigating the worldwide pandemic diffusion of SARS-Cov-2, therapeutics should provide many distinct advantages as complementary approach to control the viral spreading. Here, we report the development of new tripeptide derivatives of AT1001 against SARS-CoV-2 Mpro. By molecular modeling, a small compound library was rationally designed and filtered for enzymatic inhibition through FRET assay, leading to the identification of compound 4. X-ray crystallography studies provide insights into its binding mode and confirm the formation of a covalent bond with Mpro C145. In vitro antiviral tests indicate the improvement of biological activity of 4 respect to AT1001. In silico and X-ray crystallography analysis led to 58, showing a promising activity against three SARS-CoV-2 variants and a valuable safety in Vero cells and human embryonic lung fibroblasts. The drug tolerance was also confirmed by in vivo studies, along with pharmacokinetics evaluation. In summary, 58 could pave the way to develop a clinical candidate for intranasal administration.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Chlorocebus aethiops , Animals , Humans , Coronavirus 3C Proteases , Vero Cells , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Molecular Docking Simulation
7.
Microb Cell Fact ; 21(1): 52, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35392897

ABSTRACT

BACKGROUND: Proteins are used as reagents in a broad range of scientific fields. The reliability and reproducibility of experimental data will largely depend on the quality of the (recombinant) proteins and, consequently, these should undergo thorough structural and functional controls. Depending on the downstream application and the biochemical characteristics of the protein, different sets of specific features will need to be checked. RESULTS: A number of examples, representative of recurrent issues and previously published strategies, has been reported that illustrate real cases of recombinant protein production in which careful strategy design at the start of the project combined with quality controls throughout the production process was imperative to obtain high-quality samples compatible with the planned downstream applications. Some proteins possess intrinsic properties (e.g., prone to aggregation, rich in cysteines, or a high affinity for nucleic acids) that require certain precautions during the expression and purification process. For other proteins, the downstream application might demand specific conditions, such as for proteins intended for animal use that need to be endotoxin-free. CONCLUSIONS: This review has been designed to act as a practical reference list for researchers who wish to produce and evaluate recombinant proteins with certain specific requirements or that need particular care for their preparation and storage.


Subject(s)
Reproducibility of Results , Animals , Chromatography, Affinity , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
8.
Redox Biol ; 48: 102177, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34773836

ABSTRACT

Decreased susceptibilities of the human malaria parasite Plasmodium falciparum towards the endoperoxide antimalarial artemisinin are linked to mutations of residue C580 of PfKelch13, a homologue of the redox sensor Keap1 and other vertebrate BTB-Kelch proteins. Here, we addressed whether mutations alter the artemisinin susceptibility by modifying the redox properties of PfKelch13 or by compromising its native fold or abundance. Using selection-linked integration and the glmS ribozyme, efficient down-regulation of PfKelch13 resulted in ring-stage survival rates around 40%. While the loss of the thiol group of C469 or of the potential disulfide bond between residues C580 and C532 had no effect on the artemisinin susceptibility, the thiol group of C473 could not be replaced. Furthermore, we detected two different forms of PfKelch13 with distinct electrophoretic mobilities around 85 and 95 kDa, suggesting an unidentified post-translational modification. We also established a protocol for the production of recombinant PfKelch13 and produced an antibody against the protein. Recombinant PfKelch13 adopted alternative oligomeric states and only two of its seven cysteine residues, C469 and C473, reacted with Ellman's reagent. While common field mutations resulted in misfolded and completely insoluble recombinant PfKelch13, cysteine-to-serine replacements had no effect on the solubility except for residue C473. In summary, in contrast to residues C469, C532, and C580, the surface-exposed thiol group of residue C473 appears to be essential. However, not the redox properties but impaired folding of PfKelch13, resulting in a decreased PfKelch13 abundance, alters the artemisinin susceptibility and is the central parameter for mutant selection.

9.
J Biol Chem ; 297(4): 101175, 2021 10.
Article in English | MEDLINE | ID: mdl-34499924

ABSTRACT

The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Motifs , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Humans , Hydrogen-Ion Concentration , Interferometry , Kinetics , Protein Binding , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry
11.
Eur Biophys J ; 50(3-4): 453-460, 2021 May.
Article in English | MEDLINE | ID: mdl-33881595

ABSTRACT

As the scientific community strives to make published results more transparent and reliable, it has become obvious that poor data reproducibility can often be attributed to insufficient quality control of experimental reagents. In this context, proteins and peptides reagents require much stricter quality controls than those routinely performed on them in a significant proportion of research laboratories. Members of the ARBRE-MOBIEU and the P4EU networks have combined their expertise to generate guidelines for the evaluation of purified proteins used in life sciences and medical trials. These networks, representing more than 150 laboratories specialized in protein production and/or protein molecular biophysics, have implemented such guidelines in their respective laboratories. Over a one-year period, the network members evaluated the contribution these guidelines made toward obtaining more productive, robust and reproducible research by correlating the applied quality controls to given samples with the reliability and reproducibility of the scientific data obtained using these samples in follow-up experiments. The results indicate that QC guideline implementation facilitates the optimization of the protein purification process and improves the reliability of downstream experiments. It seems, therefore, that investing in protein QC might be advantageous to all the stakeholders in life sciences (researchers, editors, and funding agencies alike), because this practice improves data veracity and minimizes loss of valuable time and resources. In the light of these conclusions, the network members suggest that the implementation of these simple QC guidelines should become minimal reporting practice in the publication of data derived from the use of protein and peptide reagents.


Subject(s)
Data Accuracy , Quality Control , Reproducibility of Results
12.
J Mol Biol ; 433(13): 166964, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33781758

ABSTRACT

Recent years have seen a dramatic improvement in protein-design methodology. Nevertheless, most methods demand expert intervention, limiting their widespread adoption. By contrast, the PROSS algorithm for improving protein stability and heterologous expression levels has been successfully applied to a range of challenging enzymes and binding proteins. Here, we benchmark the application of PROSS as a stand-alone tool for protein scientists with no or limited experience in modeling. Twelve laboratories from the Protein Production and Purification Partnership in Europe (P4EU) challenged the PROSS algorithm with 14 unrelated protein targets without support from the PROSS developers. For each target, up to six designs were evaluated for expression levels and in some cases, for thermal stability and activity. In nine targets, designs exhibited increased heterologous expression levels either in prokaryotic and/or eukaryotic expression systems under experimental conditions that were tailored for each target protein. Furthermore, we observed increased thermal stability in nine of ten tested targets. In two prime examples, the human Stem Cell Factor (hSCF) and human Cadherin-Like Domain (CLD12) from the RET receptor, the wild type proteins were not expressible as soluble proteins in E. coli, yet the PROSS designs exhibited high expression levels in E. coli and HEK293 cells, respectively, and improved thermal stability. We conclude that PROSS may improve stability and expressibility in diverse cases, and that improvement typically requires target-specific expression conditions. This study demonstrates the strengths of community-wide efforts to probe the generality of new methods and recommends areas for future research to advance practically useful algorithms for protein science.


Subject(s)
Algorithms , Protein Stability , Animals , Escherichia coli/metabolism , HEK293 Cells , High-Throughput Screening Assays , Humans , Models, Molecular , Proteins/chemistry , Proteins/metabolism , Solubility , Temperature , Zebrafish
13.
Nat Commun ; 11(1): 5588, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149112

ABSTRACT

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the 'up' ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/prevention & control , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Cryoelectron Microscopy , Humans , Neutralization Tests , Protein Binding , Protein Conformation , Protein Domains/immunology , Receptors, Virus/metabolism , SARS-CoV-2
14.
Biochem Biophys Res Commun ; 512(4): 859-863, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30929924

ABSTRACT

Abrogation of the hemorrhagic activity of BaP1, a PI Snake Venom Metalloproteinase (SVMP) from the venom of Bothrops asper, was achieved by the substitution of residues in the first part of the Ω loop surrounding the active site by the corresponding residues of a structurally-similar non-hemorrhagic PI SVMP from a related venom. Previous studies by molecular dynamic simulation showed higher flexibility in the first part of the loop in hemorrhagic SVMPs, as compared to non-hemorrhagic SVMPs. It has been suggested that the Ω loop is critical for protein-protein interface and may be involved in the interaction with extracellular matrix proteins, hence influencing the ability of the toxin to bind and hydrolyze basement membrane components. The SVMP with the site mutation completely lost hemorrhagic activity, and only had a partial reduction of proteolytic activity, indicating that this region in the loop plays a key role in the ability to induce hemorrhage. Our findings demonstrate a key structural determinant of the hemorrhagic capacity of PI SVMPs.


Subject(s)
Crotalid Venoms/enzymology , Hemorrhage/chemically induced , Metalloproteases/genetics , Metalloproteases/pharmacology , Mutation , Animals , Catalytic Domain , Gelatin/metabolism , Metalloproteases/metabolism , Mice , Mice, Inbred Strains , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
15.
J Struct Biol ; 203(2): 71-80, 2018 08.
Article in English | MEDLINE | ID: mdl-29545204

ABSTRACT

Baculovirus-insect cell expression system has become one of the most widely used eukaryotic expression systems for heterologous protein production in many laboratories. The availability of robust insect cell lines, serum-free media, a range of vectors and commercially-packaged kits have supported the demand for maximizing the exploitation of the baculovirus-insect cell expression system. Naturally, this resulted in varied strategies adopted by different laboratories to optimize protein production. Most laboratories have preference in using either the E. coli transposition-based recombination bacmid technology (e.g. Bac-to-Bac®) or homologous recombination transfection within insect cells (e.g. flashBAC™). Limited data is presented in the literature to benchmark the protocols used for these baculovirus vectors to facilitate the selection of a system for optimal production of target proteins. Taking advantage of the Protein Production and Purification Partnership in Europe (P4EU) scientific network, a benchmarking initiative was designed to compare the diverse protocols established in thirteen individual laboratories. This benchmarking initiative compared the expression of four selected intracellular proteins (mouse Dicer-2, 204 kDa; human ABL1 wildtype, 126 kDa; human FMRP, 68 kDa; viral vNS1-H1, 76 kDa). Here, we present the expression and purification results on these proteins and highlight the significant differences in expression yields obtained using different commercially-packaged baculovirus vectors. The highest expression level for difficult-to-express intracellular protein candidates were observed with the EmBacY baculovirus vector system.


Subject(s)
Baculoviridae/genetics , Genetic Vectors/genetics , Recombinant Proteins/metabolism , Animals , Cell Line , Escherichia coli/genetics , Escherichia coli/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Humans , Mice , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Recombinant Proteins/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism , Sf9 Cells
16.
G3 (Bethesda) ; 8(1): 79-89, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29118030

ABSTRACT

Efficient preparation of high-quality sequencing libraries that well represent the biological sample is a key step for using next-generation sequencing in research. Tn5 enables fast, robust, and highly efficient processing of limited input material while scaling to the parallel processing of hundreds of samples. Here, we present a robust Tn5 transposase purification strategy based on an N-terminal His6-Sumo3 tag. We demonstrate that libraries prepared with our in-house Tn5 are of the same quality as those processed with a commercially available kit (Nextera XT), while they dramatically reduce the cost of large-scale experiments. We introduce improved purification strategies for two versions of the Tn5 enzyme. The first version carries the previously reported point mutations E54K and L372P, and stably produces libraries of constant fragment size distribution, even if the Tn5-to-input molecule ratio varies. The second Tn5 construct carries an additional point mutation (R27S) in the DNA-binding domain. This construct allows for adjustment of the fragment size distribution based on enzyme concentration during tagmentation, a feature that opens new opportunities for use of Tn5 in customized experimental designs. We demonstrate the versatility of our Tn5 enzymes in different experimental settings, including a novel single-cell polyadenylation site mapping protocol as well as ultralow input DNA sequencing.


Subject(s)
Gene Library , High-Throughput Nucleotide Sequencing/methods , Point Mutation , Recombinant Fusion Proteins/genetics , Transposases/genetics , Base Sequence , Cloning, Molecular/methods , DNA/genetics , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HeLa Cells , High-Throughput Nucleotide Sequencing/economics , Humans , Polyadenylation , Protein Binding , Recombinant Fusion Proteins/metabolism , Transposases/metabolism
17.
Cell Rep ; 8(1): 1-9, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24981858

ABSTRACT

RPGR-interacting protein 1 (RPGRIP1) is mutated in the eye disease Leber congenital amaurosis (LCA) and its structural homolog, RPGRIP1-like (RPGRIP1L), is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR). RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID) of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical ß sandwich structure that does not bind Ca(2+) and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.


Subject(s)
Axoneme/metabolism , Proteins/chemistry , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Cilia/metabolism , Cytoskeletal Proteins , Eye Proteins/metabolism , Humans , Molecular Sequence Data , Phospholipids/metabolism , Protein Binding , Proteins/genetics , Proteins/metabolism
18.
J Mol Biol ; 401(5): 921-30, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20620146

ABSTRACT

Many lipoproteins reside in the outer membrane (OM) of Gram-negative bacteria, and their biogenesis is dependent on the Lol (localization of lipoproteins) system. The periplasmic chaperone LolA accepts OM-destined lipoproteins that are released from the inner membrane by the LolCDE complex and transfers them to the OM receptor LolB. The exact nature of the LolA-lipoprotein complex is still unknown. The crystal structure of Escherichia coli LolA features an open beta-barrel covered by alpha helices that together constitute a hydrophobic cavity, which would allow the binding of one acyl chain. However, OM lipoproteins contain three acyl chains, and the stoichiometry of the LolA-lipoprotein complex is 1:1. Here we present the crystal structure of Pseudomonas aeruginosa LolA that projects clear hydrophobic surface patches. Since these patches are large enough to accommodate acyl chains, their role in lipoprotein binding was investigated. Several LolA mutant proteins were created, and their functionality was assessed by studying their capacity to release lipoproteins produced in sphaeroplasts. Interruption of the largest hydrophobic patch completely destroyed the lipoprotein-releasing capacity of LolA, while interruption of smaller patches apparently reduced efficiency. Thus, the results show a new lipoprotein transport model that places (some of) the acyl chains on the hydrophobic surface patches.


Subject(s)
Bacterial Proteins/metabolism , Lipoproteins/metabolism , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Circular Dichroism , Cloning, Molecular , Crystallization , Crystallography, X-Ray , DNA Primers , Electrophoresis, Polyacrylamide Gel , Models, Molecular , Protein Binding , Protein Conformation , Surface Properties
19.
Microbiology (Reading) ; 156(Pt 9): 2597-2607, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20616104

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen able to cause acute or chronic infections. Like all other Pseudomonas species, P. aeruginosa has a large genome, >6 Mb, encoding more than 5000 proteins. Many proteins are localized in membranes, among them lipoproteins, which can be found tethered to the inner or the outer membrane. Lipoproteins are translocated from the cytoplasm and their N-terminal signal peptide is cleaved by the signal peptidase II, which recognizes a specific sequence called the lipobox just before the first cysteine of the mature lipoprotein. A majority of lipoproteins are transported to the outer membrane via the LolCDEAB system, while those having an avoidance signal remain in the inner membrane. In Escherichia coli, the presence of an aspartate residue after the cysteine is sufficient to cause the lipoprotein to remain in the inner membrane, while in P. aeruginosa the situation is more complex and involves amino acids at position +3 and +4 after the cysteine. Previous studies indicated that there are 185 lipoproteins in P. aeruginosa, with a minority in the inner membrane. A reanalysis led to a reduction of this number to 175, while new retention signals could be predicted, increasing the percentage of inner-membrane lipoproteins to 20 %. About one-third (62 out of 175) of the lipoprotein genes are present in the 17 Pseudomonas genomes sequenced, meaning that these genes are part of the core genome of the genus. Lipoproteins can be classified into families, including those outer-membrane proteins having a structural role or involved in efflux of antibiotics. Comparison of various microarray data indicates that exposure to epithelial cells or some antibiotics, or conversion to mucoidy, has a major influence on the expression of lipoprotein genes in P. aeruginosa.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genome, Bacterial , Lipoproteins/genetics , Lipoproteins/metabolism , Pseudomonas aeruginosa/genetics , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...