Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 9(2): 288-97, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17357021

ABSTRACT

Three-year-old beech (Fagus sylvatica) seedlings growing in containers were placed into the sun and shade crown of a mature beech stand exposed to ambient (1 x O(3)) and double ambient (2 x O(3)) ozone concentrations at a free-air exposure system ("Kranzberg Forst", Germany). Pigments, alpha-tocopherol, glutathione, ascorbate, and gas exchange were measured in leaves during 2003 (a drought year) and 2004 (an average year). Sun-exposed seedlings showed higher contents of antioxidants, xanthophylls, and beta-carotene and lower contents of chlorophyll, alpha-carotene, and neoxanthin than shade-exposed seedlings. In 2003 sun-exposed seedlings showed higher contents of carotenoids and total glutathione and lower net photosynthesis rates (A(max)) compared to 2004. O(3) exposure generally affected the content of chlorophyll, the xanthophyll cycle, and the intercellular CO(2) concentration (c(i)). Seedlings differed from the adjacent adult trees in most biochemical and physiological parameters investigated: Sun exposed seedlings showed higher contents of alpha-tocopherol and xanthophylls and lower contents of ascorbate, chlorophyll, neoxanthin, and alpha-carotene compared to adult trees. Shade exposed seedlings had lower contents of xanthophylls, alpha-carotene, and alpha-tocopherol than shade leaves of old-growth trees. In 2003, seedlings had higher A(max), stomatal conductance (g(s)), and c(i) under 2 x O(3) than adult trees. The results showed that shade acclimated beech seedlings are more sensitive to O(3), possibly due to a lower antioxidative capacity per O(3) uptake. We conclude that beech seedlings are uncertain surrogates for adult beech trees.


Subject(s)
Air , Antioxidants/metabolism , Fagus/drug effects , Fagus/metabolism , Gases/metabolism , Ozone/pharmacology , Analysis of Variance , Ascorbic Acid/metabolism , Chlorophyll/metabolism , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Seedlings/drug effects , Seedlings/metabolism , Trees/drug effects , Trees/metabolism , Xanthophylls/metabolism
2.
Environ Pollut ; 137(3): 476-82, 2005 Oct.
Article in English | MEDLINE | ID: mdl-15894415

ABSTRACT

We characterized leaf gas exchange and antioxidative defence of two-year-old seedlings and 60-year-old trees of Fagus sylvatica exposed to ambient (1 x O3) or two-fold ambient (2 x O3) O3 concentrations (maximum of 150 ppb) in a free-air canopy exposure system throughout the growing season. Decline in photosynthesis from sun-exposed to shaded conditions was more pronounced in adult than juvenile trees. Seedling leaves and leaves in the sun-exposed canopy had higher stomatal conductance and higher internal CO2 concentrations relative to leaves of adult trees and leaves in shaded conditions. There was a weak overall depression of photosynthesis in the 2 x O3 variants across age classes and canopy positions. Pigment and tocopherol concentrations of leaves were significantly affected by canopy position and tree age, whereas differences between 1 x O3 and 2 x O3 regimes were not observed. Glutathione concentrations were significantly increased under 2 x O3 across both age classes and canopy levels. Seedlings differed from adult trees in relevant physiological and biochemical traits in ozone response. The water-soluble antioxidative systems responded most sensitively to 2 x O3 without regard of tree age or canopy position.


Subject(s)
Acclimatization , Air Pollutants/toxicity , Environmental Pollution/adverse effects , Fagus/growth & development , Ozone/toxicity , Plant Leaves/metabolism , Antioxidants/metabolism , Ascorbic Acid/analysis , Carbon Dioxide , Ecology/methods , Fagus/metabolism , Glutathione/analysis , Photosynthesis , Plant Transpiration , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL