Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 17(1): 146, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33827545

ABSTRACT

BACKGROUND: Nephrotic syndrome (NS) is rare in dogs and is characterized by concurrent clinical findings of proteinuria, hyperlipidemia, hypoalbuminemia, and edema. NS has been reported in humans receiving tyrosine kinase inhibitors (TKI) and in dogs receiving masitinib. This is the first report of NS in a dog receiving toceranib phosphate. CASE PRESENTATION: An 8-year-old, female, spayed Labrador retriever was diagnosed with a 10 cm mast cell tumor on the left lateral abdomen. After completion of a 12-week vinblastine and prednisone protocol, she began treatment with toceranib phosphate (2.6 mg/kg by mouth, every other day). Proteinuria was documented prior to starting toceranib. On day 426 after diagnosis (day 328 of toceranib phosphate treatment), the dog was evaluated for diarrhea, lethargy and anorexia. On physical examination, dependent edema was noted on the ventral chest and abdomen, and sterile neutrophilic inflammation was aspirated from a 2.3 cm splenic nodule. The following laboratory values were reported: albumin < 1.5 g/dL; cholesterol 378 mg/dl and urine protein to creatinine ratio of 3.79. The patient was diagnosed with NS, and treatment with toceranib phosphate was discontinued. Low-dose aspirin was started in addition to an increased dosage of enalapril (0.47 mg/kg q12hr). No other therapy was instituted. The dog improved clinically, and laboratory values returned to near normal over the 8-week follow-up. She was euthanized 1399 days after discontinuing toceranib phosphate with progressive disease. CONCLUSIONS: Nephrotic syndrome is a potential adverse event associated with the drug toceranib phosphate which may be reversible with discontinuation of treatment. Careful monitoring of urine protein, serum biochemistry, blood pressure and patient weight is advisable during treatment with toceranib phosphate.


Subject(s)
Dog Diseases/chemically induced , Indoles/adverse effects , Indoles/therapeutic use , Nephrotic Syndrome/veterinary , Pyrroles/adverse effects , Pyrroles/therapeutic use , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Dogs , Female , Humans , Nephrotic Syndrome/chemically induced
2.
J Cell Mol Med ; 24(2): 1738-1749, 2020 01.
Article in English | MEDLINE | ID: mdl-31863639

ABSTRACT

Glioblastoma is an aggressive brain tumour found in adults, and the therapeutic approaches available have not significantly increased patient survival. Recently, we discovered that ELTD1, an angiogenic biomarker, is highly expressed in human gliomas. Polyclonal anti-ELTD1 treatments were effective in glioma pre-clinical models, however, pAb binding is potentially promiscuous. Therefore, the aim of this study was to determine the effects of an optimized monoclonal anti-ELTD1 treatment in G55 xenograft glioma models. MRI was used to assess the effects of the treatments on animal survival, tumour volumes, perfusion rates and binding specificity. Immunohistochemistry and histology were conducted to confirm and characterize microvessel density and Notch1 levels, and to locate the molecular probes. RNA-sequencing was used to analyse the effects of the mAb treatment. Our monoclonal anti-ELTD1 treatment significantly increased animal survival, reduced tumour volumes, normalized the vasculature and showed higher binding specificity within the tumour compared with both control- and polyclonal-treated mice. Notch1 positivity staining and RNA-seq results suggested that ELTD1 has the ability to interact with and interrupt Notch1 signalling. Although little is known about ELTD1, particularly about its ligand and pathways, our data suggest that our monoclonal anti-ELTD1 antibody is a promising anti-angiogenic therapeutic in glioblastomas.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Receptors, G-Protein-Coupled/immunology , Xenograft Model Antitumor Assays , Animals , Antibodies, Monoclonal/pharmacology , Brain Neoplasms/pathology , Cell Line, Tumor , Chickens , Glioblastoma/pathology , Humans , Mice , Microvessels/drug effects , Microvessels/pathology , Receptors, Notch/metabolism , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...