Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(5): 1273-1278, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38278141

ABSTRACT

Photothermal deflection spectroscopy (PDS) emerges as a highly sensitive noncontact technique for measuring absorption spectra and serves for studying defect states within semiconductor thin films. In our study, we applied PDS to methylammonium lead bromide single crystals. By analyzing the frequency dependence of the PDS spectra and the phase difference of the signal, we can differentiate between surface and bulk deep defect absorption states. This methodology allowed us to investigate the effects of bismuth doping and light-induced degradation. The identified absorption states are attributed to MA+ vibrational states and structural defects, and their influence on the nonradiative recombination probability is discussed. This distinction significantly enhances our capability to characterize and analyze perovskite materials at a deeper level.

2.
Molecules ; 28(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570793

ABSTRACT

Bulk heterojunction polymer solar cells (PSCs) blended with non-fullerene-type acceptors (NFAs) possess good solar power conversion efficiency and compatibility with flexible electronics, rendering them good candidates for mobile photovoltaic applications. However, their internal absorption performance and mechanism are yet to be fully elucidated because of their complicated interference effect caused by their multilayer device structure. The transfer matrix method (TMM) is ideal for analyzing complex optical electric fields by considering multilayer interference effects. In this study, an active layer (AL) thickness-dependent TMM is used to obtain accurate information on the photon-capturing mechanisms of NFA-based PSCs for comparison with experimental results. Devices with AL thicknesses of 40-350 nm were prepared, and the AL-thickness-dependent device parameters with incident photon-to-current efficiency spectra were compared with the calculated internal absorption spectra of the TMM. The spectrally and spatially resolved spectra as a function of the AL thickness and excitation wavelength revealed that the power conversion efficiency of the NFA-blended PSC decreased with the increasing AL thickness after reaching a maximum of ~100 nm; by contrast, the internal absorption efficiency showed the opposite trend. Furthermore, the TMM spectra indicated that the spatial distribution of the photogenerated charge carriers became significantly imbalanced as the AL thickness increased, implying that the AL-dependent loss stemmed from the discrepancy between the absorption and the extracted charge carriers.

3.
Materials (Basel) ; 16(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37176178

ABSTRACT

The influence of Mo on the electronic states and crystalline structure, as well as morphology, phase composition, luminescence, and defects in ZnO rods grown as free-standing nanoparticles, was studied using a variety of experimental techniques. Mo has almost no influence on the luminescence of the grown ZnO particles, whereas shallow donors are strongly affected in ZnO rods. Annealing in air causes exciton and defect-related bands to drop upon Mo doping level. The increase of the Mo doping level from 20 to 30% leads to the creation of dominating molybdates. This leads to a concomitant drop in the number of formed ZnO nanorods.

4.
Materials (Basel) ; 15(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35329712

ABSTRACT

Cationic doping of ZnO nanorods has gained increased interest as it can lead to the production of materials with improved luminescent properties, electrical conductivity and stability. We report on various Mo-doped ZnO powders of nanorods synthesized by the hydrothermal growth method. Further annealing or/and cold hydrogen or oxygen plasma modification was applied. The atomic structure of the as-grown and plasma-modified rods was characterized by X-ray diffraction. To identify any possible changes in morphology, scanning electron microscopy was used. Paramagnetic point defects were investigated by electron paramagnetic resonance. In particular, two new types of defects were initiated by the plasma treatment. Their appearance was explained, and corresponding mechanisms were proposed. The changes in the luminescence and scintillation properties were characterized by photo- and radioluminescence, respectively. Charge trapping phenomena were studied by thermally stimulated luminescence. Cold plasma treatment influenced the luminescence properties of ZnO:Mo structures. The contact with hydrogen lead to an approximately threefold increase in intensity of the ultraviolet exciton-related band peaking at ~3.24 eV, whereas the red band attributed to zinc vacancies (~1.97 eV) was suppressed compared to the as-grown samples. The exciton- and defect-related emission subsided after the treatment in oxygen plasma.

5.
Int J Nanomedicine ; 16: 3541-3554, 2021.
Article in English | MEDLINE | ID: mdl-34079247

ABSTRACT

PURPOSE: Nanomaterials for antimicrobial applications have gained interest in recent years due to the increasing bacteria resistance to conventional antibiotics. Wound sterilization, water treatment and surface decontamination all avail from multifunctional materials that also possess excellent antibacterial properties, eg zinc oxide (ZnO). Here, we assess and compare the effects of synthesized hedgehog-like ZnO structures and commercial ZnO particles with and without mixing on the inactivation of bacteria on surfaces and in liquid environments. METHODS: Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria in microbial culture medium were added to reverse spin bioreactors that contained different concentrations of each ZnO type to enable dynamic mixing of the bacteria-ZnO suspensions. Optical density of the bacteria-ZnO suspensions was measured in real-time and the number of viable bacteria after 24 h exposure was determined using standard microbiological techniques. The concentration of zinc ion generated from ZnO dissolution in different liquid types was estimated from the dynamic interaction exposure. Static antibacterial tests without agitation in liquid media and on agar surface were performed for comparison. RESULTS: A correlation between increasing ZnO particle concentration and reduction in viable bacteria was not monotonous. The lowest concentration tested (10 µg/mL) even stimulated bacteria growth. The hedgehog ZnO was significantly more antibacterial than commercial ZnO particles at higher concentrations (up to 1000 µg/mL tested), more against E. coli than S. aureus. Minimum inhibitory concentration in microwell plates was correlated with those results. No inhibition was detected for any ZnO type deposited on agar surface. Zinc ion release was greatly suppressed in cultivation media. Scanning electron microscopy images revealed that ZnO needles can pierce membrane of bacteria whereas the commercial ZnO nanoparticles rather agglomerate on the cell surface. CONCLUSION: The inhibition effects are thus mainly controlled by the interaction dynamics between bacteria and ZnO, where mixing greatly enhances antibacterial efficacy of all ZnO particles. The efficacy is modulated also by ZnO particle shapes, where hedgehog ZnO has superior effect, in particular at lower concentrations. However, at too low concentrations, ZnO can stimulate bacteria growth and must be thus used with caution.


Subject(s)
Escherichia coli/drug effects , Escherichia coli/growth & development , Hedgehogs , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Microbial Sensitivity Tests
6.
ACS Appl Mater Interfaces ; 13(19): 23173-23180, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33955729

ABSTRACT

This work demonstrated the enhanced photodegradation (PD) resulting from Co-rich doping of ZnO nanowire (NW) surfaces (Co2+/ZnO NWs) prepared by combining Co sputtering on ZnO NWs and immersion in deionized water to exploit the hydrophilic-hydrophobic transitions on the ZnO surfaces resulting from Co atom diffusion. Because of the controllable spin-dependent density of states (DOS) induced by Co2+, the PD of methylene blue dye can be enhanced by approximately 90% (when compared with bare ZnO NWs) by using a conventional permanent magnet with a relatively low magnetic field strength of approximately 0.15 T. The reliability of spin polarization-modulation attained through surface doping, based on the magnetic response observed from X-ray absorption measurements and magnetic circular dichroism, provides an opportunity to create highly efficient catalysts by engineering surfaces and tailoring their spin-dependent DOS.

8.
Sci Rep ; 11(1): 590, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33437005

ABSTRACT

Nanoscale composite of detonation nanodiamond (DND) and polypyrrole (PPy) as a representative of organic light-harvesting polymers is explored for energy generation, using nanodiamond as an inorganic electron acceptor. We present a technology for the composite layer-by-layer synthesis that is suitable for solar cell fabrication. The formation, pronounced material interaction, and photovoltaic properties of DND-PPy composites are characterized down to nanoscale by atomic force microscopy, infrared spectroscopy, Kelvin probe, and electronic transport measurements. The data show that DNDs with different surface terminations (hydrogenated, oxidized, poly-functional) assemble PPy oligomers in different ways. This leads to composites with different optoelectronic properties. Tight material interaction results in significantly enhanced photovoltage and broadband (1-3.5 eV) optical absorption in DND/PPy composites compared to pristine materials. Combination of both oxygen and hydrogen functional groups on the nanodiamond surface appears to be the most favorable for the optoelectronic effects. Theoretical DFT calculations corroborate the experimental data. Test solar cells demonstrate the functionality of the concept.

9.
Glob Chall ; 4(10): 2000025, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33033627

ABSTRACT

The rarely explored, spin-polarized band engineering, enables direct dynamic control of the magneto-optical absorption (MOA) and associated magneto-photocurrent (MPC) by a magnetic field, greatly enhancing the range of applicability of photosensitive semiconductor materials. It is demonstrated that large negative and positive MOA and MPC effects can be tuned alternately in amorphous carbon ( a-C )/ZnO nanowires by controlling the sp2/sp3 ratio of a-C . A sizeable enhancement of the MPC ratio (≈15%) appears at a relatively low magnetic field (≈0.2 T). Simulated two peaks spin-polarized density of states is applied to explain that the alternate sign switching of the MOA is mainly related to the charge transfer between ZnO and C. The results indicate that the enhanced magnetic field performance of ( a-C )/ZnO nanowires may have applications in renewable energy-related fields and tunable magneto-photonics.

10.
Micromachines (Basel) ; 9(7)2018 Jun 22.
Article in English | MEDLINE | ID: mdl-30424249

ABSTRACT

We present a fundamental study of the erbium luminescence centres in single- and nano-crystalline (NCD) diamonds. Both diamond forms were doped with Er using ion implantation with the energy of 190 keV at fluences up to 5 × 1015 ions·cm-2, followed by annealing at controllable temperature in Ar atmosphere or vacuum to enhance the near infrared photoluminescence. The Rutherford Backscattering Spectrometry showed that Er concentration maximum determined for NCD films is slightly shifted to the depth with respect to the Stopping and Range of Ions in Matter simulation. The number of the displaced atoms per depth slightly increased with the fluence, but in fact the maximum reached the fully disordered target even in the lowest ion fluence used. The post-implantation annealing at 800 °C in vacuum had a further beneficial effect on erbium luminescence intensity at around 1.5 µm, especially for the Er-doped NCD films, which contain a higher amount of grain boundaries than single-crystalline diamond.

11.
Rev Sci Instrum ; 89(6): 063114, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29960568

ABSTRACT

An improved contactless method of the measurement and evaluation of charge carrier profiles in polished wafers by infrared reflectance was developed. The sensitivity of optical reflectance to the incidence angle was theoretically analyzed. A grazing incident angle enhances sensitivity to doping profile parameters. At the same time, the sensitivity to experimental errors sharply increases around the Brewster angle. Therefore, the optimal angle of 65° was chosen. Experimental errors such as unintentional polarization of the measurement beam were minimized by division by reference spectra taken on an undoped sample and further by normalization to a fixed value in the region of 4000 cm-1 to 7000 cm-1. The carrier profile in boron-doped samples was parametrized by 3 parameters and that in phosphorous-doped samples was parametrized by 4 parameters, using additional empirically determined assumptions. As a physical model, the Drude equation is used with two parameters assumed to be concentration-dependent: relaxation time and contribution from band-to-band excitations. The model parameters were calibrated independently by infrared ellipsometry. The presented method gives results in satisfactory agreement with the profiles measured by the electrochemical capacitance-voltage method.

12.
Sci Technol Adv Mater ; 19(1): 396-410, 2018.
Article in English | MEDLINE | ID: mdl-29785230

ABSTRACT

Cu(In,Ga)Se2 based solar cells have reached efficiencies close to 23%. Further knowledge-driven improvements require accurate determination of the material properties. Here, we present refractive indices for all layers in Cu(In,Ga)Se2 solar cells with high efficiency. The optical bandgap of Cu(In,Ga)Se2 does not depend on the Cu content in the explored composition range, while the absorption coefficient value is primarily determined by the Cu content. An expression for the absorption spectrum is proposed, with Ga and Cu compositions as parameters. This set of parameters allows accurate device simulations to understand remaining absorption and carrier collection losses and develop strategies to improve performances.

13.
Beilstein J Nanotechnol ; 8: 446-451, 2017.
Article in English | MEDLINE | ID: mdl-28326235

ABSTRACT

Densely packed ZnO nanocolumns (NCs), perpendicularly oriented to the fused-silica substrates were directly grown under hydrothermal conditions at 90 °C, with a growth rate of around 0.2 µm/h. The morphology of the nanostructures was visualized and analyzed by scanning electron microscopy (SEM). The surface properties of ZnO NCs and the binding state of present elements were investigated before and after different plasma treatments, typically used in plasma-enhanced CVD solar cell deposition processes, by X-ray photoelectron spectroscopy (XPS). Photothermal deflection spectroscopy (PDS) was used to investigate the optical and photoelectrical characteristics of the ZnO NCs, and the changes induced to the absorptance by the plasma treatments. A strong impact of hydrogen plasma treatment on the free-carrier and defect absorption of ZnO NCs has been directly detected in the PDS spectra. Although oxygen plasma treatment was proven to be more efficient in the surface activation of the ZnO NC, the PDS analysis showed that the plasma treatment left the optical and photoelectrical features of the ZnO NCs intact. Thus, it was proven that the selected oxygen plasma treatment can be of great benefit for the development of thin film solar cells based on ZnO NCs.

14.
Phys Chem Chem Phys ; 19(8): 6233-6245, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28195287

ABSTRACT

Diamond is proposed as an extraordinary material usable in interdisciplinary fields, especially in optics and photonics. In this contribution we focus on the doping of diamond with erbium as an optically active centre. In the theoretical part of the study based on DFT simulations we have developed two Er-doped diamond structural models with 0 to 4 carbon vacancies in the vicinity of the Er atom and performed geometry optimizations by the calculation of cohesive energies and defect formation energies. The theoretical results showed an excellent agreement between the calculated and experimental cohesive energies for the parent diamond. The highest values of cohesive energies and the lowest values of defect formation energies were obtained for models with erbium in the substitutional carbon position with 1 or 3 vacancies in the vicinity of the erbium atom. From the geometry optimization the structural model with 1 vacancy had an octahedral symmetry whereas the model with 3 vacancies had a coordination of 10 forming a trigonal structure with a hexagonal ring. In the experimental part, erbium doped diamond crystal samples were prepared by ion implantation of Er+ ions using ion implantation fluences ranging from 1 × 1014 ions per cm2 to 5 × 1015 ions per cm2. The experimental results revealed a high degree of diamond structural damage after the ion implantation process reaching up to 69% of disordered atoms in the samples. The prepared Er-doped diamond samples annealed at the temperatures of 400, 600 and 800 °C in a vacuum revealed clear luminescence, where the 〈110〉 cut sample has approximately 6-7 times higher luminescence intensity than the 〈001〉 cut sample with the same ion implantation fluence. The reported results are the first demonstration of the Er luminescence in the single crystal diamond structure for the near-infrared spectral region.

15.
J Phys Chem Lett ; 8(4): 838-843, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28121155

ABSTRACT

Optical absorptance spectroscopy of polycrystalline CH3NH3PbI3 films usually indicates the presence of a PbI2 phase, either as a preparation residue or due to film degradation, but gives no insight on how this may affect electrical properties. Here, we apply photocurrent spectroscopy to both perovskite solar cells and coplanar-contacted layers at various stages of degradation. In both cases, we find that the presence of a PbI2 phase restricts charge-carrier transport, suggesting that PbI2 encapsulates CH3NH3PbI3 grains. We also find that PbI2 injects holes into the CH3NH3PbI3 grains, increasing the apparent photosensitivity of PbI2. This phenomenon, known as modulation doping, is absent in the photocurrent spectra of solar cells, where holes and electrons have to be collected in pairs. This interpretation provides insights into the photogeneration and carrier transport in dual-phase perovskites.

16.
Langmuir ; 30(8): 2054-60, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24524343

ABSTRACT

We report on the fabrication and practical use of high-quality optical elements based on Au mirrors coated with diamond layers with flat, nanocolumnar, and nanoporous morphologies. Diamond layers (100 nm thickness) are grown at low temperatures (about 300 °C) from a methane, carbon dioxide, and hydrogen gas mixture by a pulsed microwave plasma system with linear antennas. Using grazing angle reflectance (GAR) Fourier transform infrared spectroscopy with p-polarized light, we compare the IR spectra of fetal bovine serum proteins adsorbed on diamond layers with oxidized (hydrophilic) surfaces. We show that the nanoporous diamond layers provide IR spectra with a signal gain of about 600% and a significantly improved sensitivity limit. This is attributed to its enhanced internal surface area. The improved sensitivity enabled us to distinguish weak infrared absorption peaks of <10-nm-thick protein layers and thereby to analyze the intimate diamond-molecule interface.


Subject(s)
Diamond/chemistry , Gold/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared/instrumentation , Spectroscopy, Fourier Transform Infrared/methods
17.
Opt Express ; 21(7): 8417-25, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23571931

ABSTRACT

Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.


Subject(s)
Diamond/chemistry , Nanoparticles/chemistry , Nanotechnology/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Crystallization , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...