Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 10(16): 13720-13728, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29608054

ABSTRACT

Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li7La3Zr2O12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li7-3 xGa xLa3Zr2O12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li7-3 xGa xLa3Zr2O12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10-5 S cm-1 at 30 °C. We also note the formation of cubic Li7La3Zr2O12 at the relatively low temperature of 500 °C.

2.
Dalton Trans ; 46(37): 12434-12437, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28891563

ABSTRACT

This communication presents the first synthesis of nanoconfined Lithium closo-borate, Li2B12H12, using nanoporous SiO2 as scaffold. The yield of Li2B12H12 is up to 94 mol%. The as-synthesized nanoconfined Li2B12H12 exhibits a structural transition around 380 °C and conversion to H-deficiency Li2B12H12-x at 580 °C.

3.
Phys Chem Chem Phys ; 19(11): 7788-7792, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28262887

ABSTRACT

Ca(BH4)2 could reversibly store 9.6 wt% hydrogen based on the overall reaction of Ca(BH4)2 → 1/3CaB6 + 2/3CaH2 + 10/3H2. Formation of CaB6 instead of elemental boron and/or high boranes (e.g. CaB12H12) in the dehydrogenation process is crucial for rehydrogenation. Here, we reported two experimental protocols regarding how to form CaB6 from the decomposition of Ca(BH4)2: (1) decomposition below the melting point, e.g. 350 °C via CaB2H6 to CaB6 and (2) decomposition above the melting point, e.g. 400 °C via elemental boron to CaB6.

4.
Chem Commun (Camb) ; 53(30): 4195-4198, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28345102

ABSTRACT

Na2(B12H12)0.5(B10H10)0.5, a new solid-state sodium electrolyte is shown to offer high Na+ conductivity of 0.9 mS cm-1 at 20 °C, excellent thermal stability up to 300 °C, and a large electrochemical stability window of 3 V including stability towards sodium metal anodes, all essential prerequisites for a stable room-temperature 3 V all-solid-state sodium-ion battery.

5.
Chem Commun (Camb) ; 52(68): 10435-8, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27488137

ABSTRACT

The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology.

6.
Rev Sci Instrum ; 82(6): 065108, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21721731

ABSTRACT

We present the design and construction of a high-pressure (200 bars) and high-temperature (600 °C) x-ray diffraction (XRD) cell for the in situ investigation of the hydrogen sorption of hydrides. In combination with a pressure, composition, and temperature system, simultaneous XRD and volumetric measurements become accessible. The cell consists of an x-ray semi-transparent hemispherical beryllium (Be) dome covering a heatable sample stage, which simultaneously allows sample temperatures of up to 600 °C in an applied hydrogen atmosphere of up to 200 bars. The system volume is as low as possible to maximize the precision of the volumetric measurements. Due to the high thermal conductivity of hydrogen, and in order to preserve the mechanical stability of the beryllium, the cell is water cooled. Its operability was studied on the example of the hydrogen absorption of Mg(2)Ni. The advantages and limitations of the proposed design are discussed.

7.
Faraday Discuss ; 151: 213-30; discussion 285-95, 2011.
Article in English | MEDLINE | ID: mdl-22455070

ABSTRACT

The dynamics and bonding of the complex hydrides LiBH4 and LiAlH4 have been investigated by vibrational spectroscopy. The combination of infrared, Raman, and inelastic neutron scattering (INS) spectroscopies on hydrided and deuterided samples reveals a complete picture of the dynamics of the BH4- and AlH4 anions respectively as well as the lattice. The straightforward interpretation of isotope effects facilitates tracer diffusion experiments revealing the diffusion coefficients of hydrogen containing species in LiBH4, and LiAlH4. LiBH4 exchanges atomic hydrogen starting at 200 degrees C. Despite having an iso-electronic structure, the mobility of hydrogen in LiAlH4 is different from that of LiBH4. Upon ball-milling of LiAlH4 and LiAlD4, hydrogen is exchanged with deuterium even at room temperature. However, the exchange reaction competes with the decomposition of the compound. The diffusion coefficients of the alanate and borohydride have been found to be D approximately equal 7 x 10(-14) m2 s(-1) at 473 K and D approximately equal 5 x 10(-16) m2 s(-1) at 348 K, respectively. The BH4 ion is easily exchanged by other ions such as I- or by NH2-. This opens the possibility of tailoring physical properties such as the temperature of the phase transition linked to the Li-ion conductivity in LiBH4 as measured by nuclear magnetic resonance and Raman spectroscopy. Temperature dependent Raman measurements on diffusion gradient samples Li(BH4)1-cIc demonstrate that increasing temperature has a similar impact to increasing the iodide concentration c: the system is driven towards the high-temperature phase of LiBH4. The influence of anion exchange on the hydrogen sorption properties is limited, though. For example, Li4(BH4)(NH2)3 does not exchange hydrogen easily even in the melt.

8.
Phys Chem Chem Phys ; 12(36): 10919-22, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20661494

ABSTRACT

We describe a new method for the solvent-free synthesis of borohydrides at room temperature and demonstrate its feasibility by the synthesis of three of the most discussed borohydrides at present: LiBH(4), Mg(BH(4))(2) and Ca(BH(4))(2). This new gas-solid mechanochemical synthesis method is based on the reaction of metal hydrides with diborane to form the corresponding borohydrides. The synthesis will facilitate the preparation of a wide range of different borohydrides, including mixed borohydride systems, with tuneable sorption properties. We propose that diborane is an intermediate compound for the hydrogen sorption in borohydrides and may be the key for a reversible hydrogen ab- and desorption reaction under moderate conditions.

9.
Phys Chem Chem Phys ; 12(18): 4600-3, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20428539

ABSTRACT

The formation of LiBD(4) by the reaction of LiD in a diborane/hydrogen atmosphere was analysed by in situ neutron diffraction and subsequent microstructural and chemical analysis of the final product. The neutron diffraction shows that nucleation of LiBD(4) already starts at temperatures of 100 degrees C, i.e. in its low temperature phase (orthorhombic structure). However, even at higher temperatures the reaction is incomplete. We observe a yield of approximately 50% at a temperature of 185 degrees C. A core shell structure of the grains, in which LiBD(4) forms a passivation layer on the surface of the LiD grains, was found in the subsequent microstructural (electron microscopy) and chemical (electron energy loss spectrometry) analysis.

10.
Rev Sci Instrum ; 80(9): 095113, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19791970

ABSTRACT

The design and construction of a high-pressure (200 bar) and high-temperature (600 degrees C) heat-flow differential scanning calorimeter (DSC) for the in situ investigation of the hydrogenation and dehydrogenation reactions of hydrides is presented. In combination with a pressure-concentration-temperature (pcT) system, simultaneous thermodynamic and volumetric measurements become accessible. Due to the high thermal conductivity of hydrogen, only the sample cell and the reference cell are exposed to hydrogen and the remaining system is under ambient conditions. This separation has the advantage that the calibration factor is independent of the hydrogen pressure. The internal empty volume of the combined system is as low as possible to maximize the precision of the pcT measurements. The calorimetric block of the DSC is designed with a silver/copper alloy and the temperature measurements are made resistively with platinum temperature sensors (Pt 100). The instrument was calibrated and its operability was successfully studied on the example of the hydrogen sorption behavior of LaNi(5).

11.
Phys Chem Chem Phys ; 11(10): 1515-20, 2009 Mar 14.
Article in English | MEDLINE | ID: mdl-19240928

ABSTRACT

We demonstrate the synthesis of LiBH(4) from LiH and AlB(2) without the use of additional additives or catalysts at 450 degrees C under hydrogen pressure of 13 bar to the following equation: 2LiH + AlB(2) + 3H(2)<--> 2LiBH(4) + Al. By applying AlB(2) the kinetics of the formation of LiBH(4) is strongly enhanced compared to the formation from elemental boron. The formation of LiBH(4) during absorption requires the dissociation of AlB(2), i.e. a coupled reaction. The observed low absorption-pressure of 13 bar, measured during hydrogen cycling, is explained by a low stability of AlB(2), in good agreement with theoretical values. Thus starting from AlB(2) instead of B has a rather low impact on the thermodynamics, and the effect of AlB(2) on the formation of LiBH(4) is of kinetic nature facilitating the absorption by overcoming the chemical inertness of B. For desorption, the decomposition of LiBH(4) is not indispensably coupled to the immediate formation of AlB(2). LiBH(4) may decompose first into LiH and elemental B and during a slower second step AlB(2) is formed. In this case, no destabilization will be observed for desorption. However, due to similar stabilities of LiBH(4) and LiBH(4)/Al a definite answer on the desorption mechanism cannot be given and neither a coupled nor decoupled desorption can be excluded. At low hydrogen pressures the reaction of LiH and Al gives LiAl under release of hydrogen. The formation of LiAl increases the total hydrogen storage capacity, since it also contributes to the LiBH(4) formation in the absorption process.

12.
J Phys Condens Matter ; 21(33): 336004, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-21828616

ABSTRACT

We show that the magnetic state in rather thick Cr films can be finely tuned via hydrogen uptake into adjacent vanadium layers at rather low hydrogen pressures. By changing the hydrogen concentration and, hence, the electronic structure in the V layers, it is possible to affect the global properties of spin-density waves (SDWs) in Cr layers, including the SDW period and the Néel temperature. We provide direct experimental evidence that hydrogen uptake into V layers can be used to switch between incommensurate and commensurate SDW states in a reproducible way.

13.
Phys Chem Chem Phys ; 10(38): 5859-62, 2008 Oct 14.
Article in English | MEDLINE | ID: mdl-18818838

ABSTRACT

The synthesis of Li[(11)BD(4)] from LiB and D(2) (p = 180 bar) is investigated by in situ neutron diffraction. The onset of the Li[(11)BD(4)] formation is observed far below the temperatures reported so far for the reaction from the pure elements, indicative of a lower activation barrier. We attribute the improved formation behavior to the breaking of the rigid boron lattice and intermixing of the elements on an atomic level when forming the binary compound LiB. The reaction starts with the decomposition of the initial LiB compound and the formation of LiD. At 623 K LiBD(4) starts to form. However, under the given experimental conditions (maximal temperature = 773 K) a complete reaction was not achieved; there is still residual LiD present.

14.
J Phys Chem B ; 112(27): 8042-8, 2008 Jul 10.
Article in English | MEDLINE | ID: mdl-18553898

ABSTRACT

We have investigated the crystal structure of Ca(BD4)2 by combined synchrotron radiation X-ray powder diffraction, neutron powder diffraction, and ab initio calculations. Ca(BD4)2 shows a variety of structures depending on the synthesis and temperature of the samples. An unknown tetragonal crystal of Ca(BD4)2, the beta phase has been solved from diffraction data measured at 480 K on a sample synthesized by solid-gas mechanochemical reaction by using MgB2 as starting material. Above 400 K, this sample has the particularity to be almost completely into the beta phase of Ca(BD4)2. Seven tetragonal structure candidates gave similar fit of the experimental data. However, combined experimental and ab initio calculations have shown that the best description of the structure is with the space group P4(2)/m based on appropriate size/geometry of the (BD4)tetrahedra, the lowest calculated formation energy, and real positive vibrational energy, indicating a stable structure. At room temperature, this sample consists mainly of the previously reported alpha phase with space group Fddd. In the diffraction data, we have identified weak peaks of a hitherto unsolved structure of an orthorombic gamma phase of Ca(BD4)2. To properly fit the diffraction data used to solve and refine the structure of the beta phase, a preliminary structural model of the gamma phase was used. A second set of diffraction data on a sample synthesized by wet chemical method, where the gamma phase is present in significant amount, allowed us to index this phase and determine the preliminary model with space group Pbca. Ab initio calculations provide formation energies of the alpha phase and beta phase of the same order of magnitude (delta H < or = 0.15 eV). This indicates the possibility of coexistence of these phases at the same thermodynamical conditions.


Subject(s)
Borohydrides/chemistry , Calcium Compounds/chemistry , Neutron Diffraction , Synchrotrons , Crystallography, X-Ray , Deuterium/chemistry , Gases/chemistry , Magnesium/chemistry , Mechanics , Quantum Theory , Temperature , Thermodynamics
15.
Rev Sci Instrum ; 78(12): 121301, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18163713

ABSTRACT

Experimental and theoretical aspects of obtaining the magnetic information carried by laser beams diffracted from an array of micro- or nanosized magnetic objects are reviewed. We report on the fundamentals of vector magneto-optic Kerr effect (MOKE), Bragg-MOKE, and second-order effects in the Kerr signal in longitudinal Kerr geometry as well as on an experimental setup used for vector and Bragg-MOKE experiments. The vector and Bragg-MOKE technique in combination with micromagnetic simulation is a reliable tool for measuring the complete magnetization vector and for characterizing the reversal mechanism of lateral magnetic nanostructures. We discuss the Bragg-MOKE effect for three standard domain configurations during the magnetization reversal process and present the expected behavior of the magnetic hysteresis loops.

16.
Phys Rev Lett ; 90(14): 145502, 2003 Apr 11.
Article in English | MEDLINE | ID: mdl-12731926

ABSTRACT

Diffusion waves form the basis of several measurement technologies in materials science as well as in biological systems. They are, however, so heavily damped that their observation is a real challenge to the experimentalist. We show that accurate information about the refraction-like and reflection-like behavior of diffusion waves can be obtained by studying diffusion fronts. For this we use hydrogen in a metal as a model system and visualize its 2D migration with an optical indicator. The similarities between classical optics and diffusion, in particular, the applicability of Snell's law to diffusive systems are discussed. Our measurements are in good agreement with numerical simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...