Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 829: 154630, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35307432

ABSTRACT

Apart from chemical constituents, wastewater treatment plant (WWTP) effluents also release microorganisms that can be important to the receiving water bodies either from a sanitary point of view, or taking to the account the biogeochemical potential of the recipients. However, little is known about the treated wastewater microbial community, its composition, seasonal changes, functions and fate in the waters of the receiver. Thus, this study presents a synergistic approach coupling new and traditional methods: analytical chemistry, classical microbiology (cultivation- and microscopy-based methods), as well as Next Generation Sequencing and a quantitative real-time polymerase chain reaction (qPCR). The results show that in terms of bacterial community composition, treated wastewater differed from the environmental samples, irrespectively if they were related or unrelated to the WWTP effluent discharge. The canonical correspondence analysis (CCA) taking into account chemical parameters and taxonomical biodiversity indirectly confirmed the seasonal deterioration of the treated wastewater quality as a result of temperature-driven change of activated sludge community structure and biomass washout (observed also by DAPI staining). Despite seasonal fluctuations of total suspended solids and inter-related parameters (such as COD, BOD, TN, TP), the treated wastewater quality remained within current discharge limits. It was due to treatment processes intensively adjusted by WWTP operators, particularly those necessary to maintain an appropriate rate of autotrophic processes of nitrification and to support biological phosphorus removal. This can explain the observed microbiome composition similarity among WWTP effluents at high taxonomic levels. Obtained data also suggest that besides wastewater treatment efficiency, WWTP effluents are still sources of both human-related microorganisms as well as bacteria equipped in genes involved in N-cycling. Their potential of participation in nutrients cycling in the receivers is widely unknown and require critical attention and better understanding.


Subject(s)
Microbiota , Water Purification , Bacteria/genetics , Humans , Microscopy , Sewage , Waste Disposal, Fluid , Wastewater/microbiology
2.
Article in English | MEDLINE | ID: mdl-30938573

ABSTRACT

A study was conducted to characterize the raw wastewater entering a modern cost effective municipal WWTP in Poland using two approaches; 1) a combination of modeling and carbonaceous oxygen demand (COD) fractionation using respirometric test coupled with model estimation (RT-ME) and 2) flocculation/filtration COD fractionation method combined with BOD measurements (FF-BOD). It was observed that the particulate fractions of COD obtained using FF-BOD method was higher than those estimated by RT-ME approach. Contrary to the above, the values of inert soluble fraction evaluated by FF-BOD method was significantly lower than RT-ME approach (2.4% and 3.9% respectively). Furthermore, the values for low colloidal and particulate fractions as well as soluble inert fractions were different than expected from a typical municipal wastewater. These observations suggest that even at low load (10% of the total wastewater treatment inflow), the industrial wastewater composition can significantly affect the characteristics of municipal wastewater which could also affect the performance and accuracy of respirometric tests. Therefore, in such cases, comparison of the respirometric tests with flocculation/filtration COD/BOD measurements are recommended. Oxygen uptake rate profile with settled wastewater and/or after coagulation-flocculation, however, could still be recommended as a "rapid" control method for monitoring/optimising modern cost-effective wastewater treatment plants.


Subject(s)
Biological Oxygen Demand Analysis , Sewage/chemistry , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/methods , Wastewater/chemistry , Biological Oxygen Demand Analysis/methods , Biological Oxygen Demand Analysis/standards , Calibration , Carbon Compounds, Inorganic/chemistry , Chemical Fractionation/methods , Cities , Cost-Benefit Analysis , Environmental Monitoring/methods , Environmental Monitoring/standards , Filtration , Flocculation , Humans , Oxygen/chemistry , Poland , Water Purification/economics , Water Purification/methods , Water Purification/standards
3.
Article in English | MEDLINE | ID: mdl-29465297

ABSTRACT

In this work, the effect of the improvement carried out at a large-scale wastewater treatment plant (WWTP) was evaluated, by means of modelling works, with the aim to determine the influence of the modernization over the process performance. After modernization, the energy consumption due to the aeration decreased about a 20% maintaining the effluent quality. In order to double-check the good effluent quality, modelling works were carried out at the full-scale plant. After calibration, the model was applied to the upgraded full-scale plant obtaining deviations lower than 10%. Then, the performance of the main biochemical processes was evaluated in terms of oxygen uptake rate (OUR), ammonia uptake rate (AUR), and chemical oxygen demand (COD) consumption. The rate of the main processes depending on the aeration, that is OUR and AUR, were about 22 gO2/(kg VSS·h) and 2.9 gN/(kg VSS·h), respectively.


Subject(s)
Models, Theoretical , Quality Improvement , Waste Disposal, Fluid , Wastewater , Water Purification/standards , Ammonia/metabolism , Biological Oxygen Demand Analysis , Humans , Oxygen/chemistry , Oxygen/metabolism , Quality Improvement/organization & administration , Sewage/chemistry , Sewage/microbiology , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods , Waste Disposal, Fluid/standards , Wastewater/chemistry , Water Purification/instrumentation , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL