Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 100(2): 327-34, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17461054

ABSTRACT

We examined 17 pairs of near-isogenic hybrids of Bacillus thuringiensis (Bt) (176, Mon810, and Bt11) and non-Bt corn, Zea mays L., to examine the effects of Bt on larval densities of Helicoverpa zea (Boddie) and Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) during 2 yr. During ear formation, instar densities of H. zea and S. frugiperda were recorded for each hybrid. We found that H. zea first, second, and fifth instar densities were each affected by Mon810 and Bt11 Bt corn but not by 176 corn. Surprisingly, first and second instars were found in higher numbers on ears of Mon810 and Bt11 corn than on non-Bt corn. Densities of third and fourth instars were equal on Bt and non-Bt hybrids, whereas densities of fifth instars were lower on Bt plants. S. frugiperda larval densities were only affected during 1 yr when second, and fourth to sixth instars were lower on ears of Mon810 and Bt11 hybrids compared with their non-Bt counterparts. Two likely explanations for early instar H. zea densities being higher on Bt corn than non-Bt corn are that (1) Bt toxins delay development, creating a greater abundance of early instars that eventually die, and (2) reduced survival of H. zea to later instars on Bt corn decreased the normal asymmetric cannibalism or H. zea-S. frugiperda intraguild predation of late instars on early instars. Either explanation could explain why differences between Bt and non-Bt plants were greater for H. zea than S. frugiperda, because H. zea is more strongly affected by Bt toxins and more cannibalistic.


Subject(s)
Bacillus thuringiensis/genetics , Moths/physiology , Plants, Genetically Modified/parasitology , Zea mays/genetics , Animals , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Insect Control , Larva/growth & development , Larva/physiology , Moths/growth & development , Plants, Genetically Modified/metabolism , Population Density
2.
J Econ Entomol ; 99(6): 2164-70, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17195689

ABSTRACT

We examined nine pairs of near-isogenic hybrids of Bacillus thuringiensis (Bt) and non-Bt corn, Zea mays L., at two locations in 1999 and three locations in 2000 to compare the effects of Bt toxins on damage caused by Helicoverpa zea (Boddie) to whorl stage field corn, and ear damage at harvest, as well as yield. We found that whorl damage was less in all Bt hybrids compared with their non-Bt counterparts each year and at each location. Differences in ear damage between Bt and non-Bt hybrids, however, differed in 1999 and 2000. In 1999, only one Bt hybrid, NC+5788Bt, had less ear damage than its non-Bt counterpart at the dryland site, whereas four Bt hybrids, C8120Bt, P31B13Bt, P33VO8Bt, and NC+5788Bt, had less damage at the irrigated site. In 2000, most Bt hybrids had less ear damage than their non-Bt counterparts at each location. Differences in whorl damage did not translate into yield differences. However, variations in ear damage were partially reflected in yield differences. In 1999, P31B13Bt and P33V08Bt had higher yields than their non-Bt counterparts at both sites, whereas in 2000 all Bt hybrids had higher yields. Also, although whorl damage was not correlated with yield, ear damage was negatively correlated with yield; increasing ear damage by H. zea decreased yield for Bt and non-Bt hybrids alike. Overall, depending on location and year, each centimeter of H. zea ear damage reduced yield by between 2 and 13%.


Subject(s)
Bacillus thuringiensis , Seeds/growth & development , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins , Bacterial Toxins , Endotoxins , Hemolysin Proteins , Plants, Genetically Modified , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...